EVALUATION OF IMPROVED STEVEDORE PALLET, by Nilson Franco Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Forestry and Forest Products APPROVED: E. G. Stern, Chairman Geze Ifiu T. E. McLain June, 1978 Blacksburg, Virginia #### **ACKNOWLEDGMENTS** I wish to express my appreciation to Dr. E. George Stern, Director of the VPI&SU William H. Sardo Jr. Pallet and Container Research Laboratory, for his assistance, guidance, and contribution to the organization, design, and execution of this study. I would also like to thank Drs. Geza Ifju and Thomas E. McLain for their assistance in the design of the experiments and in the statistical analysis of the test data. I further wish to thank other faculty and staff members of the VPI&SU Forestry and Forest Products Department who were involved in this study, especially who carried much of the burden of performing the many tests during the short time available and fully cooperated far beyond their normal assignments. I am particularly grateful to who asked me to undertake this study and who contributed so much to its successful conclusion. Thanks are expressed to , Superintendent of Instituto de Pesquisas Tecnologicas (IPT) for extending to me a leave of absence from my position as Assistant Engineer in the Wood Division of IPT, to permit me to pursue my graduate studies at VPI&SU. Acknowledgment is also given to the Government of the State of Sao Paulo, Brazil, which maintained, through its Secretariat for Culture, Science, and Technology, the US AID-sponsored contract with Virginia Polytechnic Institute and State University (VPI&SU), that provided for the financial support of this study under Project No. 3: "Design of Wood Structures and Pallets of Brazilian Woods". The cooperation of , Vice-Inspector General, Companhia Docas de Santos (CDS), Santos, S. P., Brazil, is acknowledged for providing complete information on the palletization of the docks of Santos. Appreciation is expressed to the three suppliers of the nails used for pallet assembly: Nail (a): Industria de Arames Cleide, Santo Andre, S. P., Brazil Nail (b): Air-Fix do Brasil Ind. e Com. Ltda., Sao Paulo, S. P., Brazil Nails (c) and (d): Philstone Nail Corporation of Canton, Massachusetts, U.S.A. # TABLE OF CONTENTS | | Page | |------------------------------------|------| | ACKNOWLEDGMENTS | ii | | TABLE OF CONTENTS | iii | | LIST OF TABLES | iv | | LIST OF FIGURES | ٧ | | INTRODUCTION | 1 | | OBJECTIVES | 3 | | LITERATURE REVIEW | 4 | | MATERIALS | 8 | | EXPERIMENTAL DESIGN | 13 | | TEST PROCEDURES | 14 | | RESULTS AND DISCUSSION | 19 | | LIMITATION AND APPLICATION OF DATA | 28 | | SUMMARY | 30 | | RECOMMENDATIONS | 32 | | REFERENCES | 34 | | APPENDIX TABLES | 81 | | VITA | 120 | # LIST OF TABLES | Table | | Page | |-------|---|------------| | 7 | Production of pallets in U.S.A | 65 | | 2 | Estimated production of pallets in selected countries during 1976 | 66 | | 3 | Material requirements for pallet assembly | 67 | | 4a | Inspection record of conventional red-oak stevedore pallets | 68 | | 4b | Inspection record of improved red-oak stevedore pallets | 69 | | 5 | Average assembly and test weights of pallets of conventional and improved designs | 70 | | 6 | Statistical design used for quintuplicate pallets of conventional and improved designs assembled with four different nails | 71 | | 7 | Static deckboard-stringer separation resistance in direction of nail axis and shear resistance | 72 | | 8 | Evaluation of initial static stiffness of pallets | 73 | | 9 | Average deflections of all pallets of conventional and improved designs tested, per 100 lb. of static load applied at pallet center, according to deflections observed up to test load of 2000 lb | 74 | | 10 | Evaluation of pallet rigidity data | <i>7</i> 5 | | 17 | Evaluation of impact incline pallet deckboard-stringer separation data | 76 | | 12 | Evaluation of follow-up static stiffness of pallets | 77 | | 13 | Comparison of initial and follow-up pallet stiffness data | 78 | | 14 | Average ultimate pallet test loads | 79 | | 15 | Tentative outline of proposed field tests on stevedore pallets of improved design | 80 | # LIST OF FIGURES | Figure | | Page | |------------|---|------| | 1 | Stevedore pallets of conventional and improved designs, with locations of deflection sensors A, B, C, D, and E shown | 38 | | 2 | Photograph of nails used for pallet assembly | 39 | | 3 | Average oven-dry specific gravity of deckboards and stringers of pallets of conventional and improved designs | 40 | | 4 a | Sequential tests on reversible, double-face, wing-type, two-way, three-stringer, nailed red-oak, 48" x 63", stevedore pallets | 41 | | 4b | Computerized static load-deflection test | 42 | | 4c | Impact free-fall cornerwise drop test | 43 | | 4d | Impact incline deckboard-stringer separation test | 44 | | 4e | Failure of stevedore pallet of improved design (Bd5), assembled with 3" x 0.120" helically threaded, hardened-steel pallet nails, after 451 runs during impact incline deckboard-stringer separation test | 45 | | 4f | Repair of pallet | 46 | | 4g | Improved stevedore pallet in test rig during ultimate load test | 47 | | 4h | Failures of stevedore pallets in test rig at ultimate test loads | 48 | | 4; | Failures of stevedore pallets in test rig at ultimate test loads | 49 | | 4 i | Failures of stevedore pallets in test rig at ultimate test loads | 50 | | 5 | Average nail-withdrawal resistance | 51 | | 6 | Average nail-shear resistance | 52 | | 7 | Average load-deflection curves for initial stiffness tests on pallets of conventional and improved designs | 53 | | 8 | Regression line showing relationship between weight and cumulative deflection of pallets of improved design | 54 | | 9 | Average deflection of pallets of conventional and improved designs, per 100 lb. of static load applied at center of pallet | 55 | | 10 | Average changes in length of diagonals during six free-fall cornerwise drops of pallets | 56 | | Figure | | Page | |--------|--|------| | 11 | Grand-average changes in length of diagonals during six free-fall cornerwise drops of pallets | 57 | | 12 | Average percentile distortions and cumulative average changes in length of diagonals of pallets of conventional and improved designs | 58 | | 13 | Number of runs during incline impact tests on pallets of conventional and improved designs | 59 | | 14 | Average and grand-average numbers of runs of pallets of conventional and improved designs | 60 | | 15a | Average load-deflection curves for follow-up stiffness on pallets of conventional and improved designs | 61 | | 15b | Average load-deflection curves for follow-up stiffness on pallets of conventional and improved designs | 62 | #### INTRODUCTION Stevedore pallets are used in preference to other types of pallets in many ports. The function of stevedore pallets is to provide effective ways of handling materials at the docks. These pallets are designed to carry all kinds of products, such as bagged cereals and fertilizers, kegs, drums, boxes, and crates. The pallets are to withstand such heavy impacts as are exerted by the forks of lift trucks. Furthermore, these pallets are often used in atmospheres of high humidity, with the air having a high salt content, hence, being corrosive. Since stevedore pallets are used mainly to facilitate materials handling at the docks, they can be considered captive pallets. For this reason, it is both feasible and desirable to design and build these pallets in such a way that they have a useful service life over a long period, thereby capitalizing on the fact that long-lasting pallets are normally the most efficient pallets. Because of their more or less continuous rough use and exposure to the elements, stevedore pallets should be of optimum design and construction. Otherwise, they are subjected to excessive damage and deterioration which could require more or less continuous and expensive repairs. In Brazil, where pallets are expected to play a major role in the rapid industrial-ization during the country's immediate future, stevedore pallets are used at the docks to a considerable extent. Relatively large numbers of Brazilian stevedore pallets are repaired daily, a situation which is aggravated by the fact that the workmen involved in pallet repair have received insufficient instruction to perform in a most effective manner. These pallets are of 48" by 63" (1200 by 1600 mm) size and usually assembled with mixed Brazilian hardwoods, some of which have densities similar to the density of the North American red oaks, a principal group of species, which are used for pallet assembly in many parts of North America. The majority of the captive Brazilian pallets are assembled today with Brazilian helically fluted nails, while helically threaded hardened-steel nails are used for this purpose in North America. These fluted nails are normally non-hardened and relatively soft. The performance of pallets is influenced by the properties of the wood and the fastener used as well as the pallet design and construction which result in interaction of wood and fastener under load. For a given species of wood, improvements of pal- let performance may be attained either by improving the design and construction or the means of fastening. One of the prevalent modes of failure is the
separation of the top leading-edge deckboards from the stringers as a result of repeated impacts by the forks of lift trucks. To reduce this incidence of failure, nails of improved toughness and holding power can be used for the fastening of deckboards to stringers. In addition, reinforcing the leading-edge deckboards against impact may be achieved by locating the adjacent deckboard directly next to the leading-edge deckboard, in order to allow interaction among both deckboards when impact forces are applied by the lift trucks. The observed Brazilian stevedore pallets are of conventional design, as shown in Fig. 1. Improvements in their design as well as in their construction have been recommended. Pallets of both conventional and improved designs and constructions, also shown in Fig. 1, were tested, in order to fulfill the objective of this study, that is, to demonstrate the effectiveness of these improvements. They included back-up deckboards for the leading-edge deckboards as well as a larger number of improved nails for fastening the deckboards to the stringers. No consideration was given to any other potential design and construction improvements during this study. Whereas peroba (Aspidosperma polyneouron) and other mixed hardwoods have been used predominantly in Brazil for stevedore pallets, red oaks and other dense hardwoods are, as already indicated, the principal species used for this purpose in North America. The conventional and improved stevedore pallets under study were made of North American red oak, since data on red oak pallets are of significant value in North America and since South American woods were not as readily available to the investigator for the assembly of the pallets under scrutiny. In order to provi de needed data on the effectiveness of the fasteners used for the assembly of stevedore pallets as manufactured in the Americas, the pallet deckboards were nailed to the pallet stringers with four different nails, as shown in Fig. 2. #### **OBJECTIVES** The objectives of this study include the quantitative evaluation of - a) the stiffness, rigidity, and load-carrying capacity of stevedore pallets of conventional and improved designs as well as their resistance to forces exerted by the forks of forklift trucks; - b) the performance of two types of nails used in Brazil and two sizes of nails used in the U.S.A. for the assembly of pallets. With such information at hand, it should be possible to advance recommendations which can result in the manufacture of more effective and longer lasting pallets which do not require such costly repairs throughout the pallet life as are experienced with the conventional pallets in common use today. #### LITERATURE REVIEW Pallets, as they are known today, are a product developed since World War II, when the forklift truck was introduced. It required the use of a platform on which products could be placed for moving, handling, storing, display, etc. These platforms are known as pallets (palle in Danish; palette in French; Palette in German; palete, estrado or plataforma in Portuguese; paleta in Spanish; and lastpall in Swedish). Most of them are made of wood. A sizeable quantity is made of plywood and relatively few are made of steel, aluminum, and plastic. The pallets made from these latter materials are usually special purpose pallets where use requirements may justify the high initial cost of these pallets. Because of the advantages offered by wooden pallets, they can be expected to remain in high demand wherever wood is economically available for their manufacture (8). The economic significance of wooden pallets becomes evident from some of the statistics available. The manufacture of wooden pallets in the U.S.A. increased drastically during the past few years, as is evident from Table 1. The most recent statistics indicate that as many as 236 million wooden pallets, produced in the U.S.A. during 1977, required the use of 15% of the national lumber production (8). Worldwide, these figures are more limited, as is shown in Table 2 (22). Research on and evaluation of pallets have been underway during the past two decades in order to assure that pallets perform as anticipated under given use conditions and to demonstrate the benefits of given improvements (9). The economic aspects of such improvements have been given special consideration (30). This experimental and market research has influenced pallet performance to such an extent that the importance of such research has been recognized by both pallet manufacturers and pallet users. Methods of testing pallets were standardized by the American Society for Testing and Materials (ASTM) several years ago. Among these methods is the two-step pallet stiffness test which evaluates the stiffness (a) across the pallet width and (b) across the pallet length (4). Another ASTM test is the diagonal rigidity test (4) and a third one is the leading-edge impact resistance test (4). The latter two test methods were among those used during this study of the evaluation of stevedore pallets. Among the test methods developed at the William H. Sardo Jr. Pallet and Container Research Laboratory (10) and published by the American National Standards Institute (ANSI) is one which allows the simultaneous testing of the pallet for its stiffness across both its length and width as well as at the pallet center while the pallet is supported at its four corners and loaded at the center (3). Both the ASTM and VPI&SU stiffness test methods were evaluated at the Sardo Laboratory by performing fully comparative tests in order to provide comparative data resulting from the use of the two test methods (20). Pallets were tested for their stiffness and ultimate load at failure. The VPI&SU method, in comparison with the ASTM method, was found to be simpler, less time-consuming, better suited for yielding valuable supplementary data, and more stringent with respect to the ultimate load-carrying capacity of the tested pallet. This improved test method can yield highly reproducible and accurate test data. Consequently, it appears to be not only reliable but worthy of confidence (20). Among the many experimental studies undertaken at the Sardo Laboratory and of particular interest to the Brazilian pallet manufacturer is one designed to determine the performance of warehouse and exchange pallets made of <u>Eucalyptus saligna</u> shook sawn from bolts of 55-year old and older trees. The fasteners used for shock assembly were NWPCA-approved (a) $2\frac{1}{4}$ " x 0.113" and $2\frac{1}{2}$ " x 0.119", helically threaded, hardenedsteel, pallet nails, and (b) $2\frac{1}{2}$ " x 15-gauge, 7/16"-crown, polymer-coated, pallet staples (26). During tests on eucalyptus deckboard-stringer joints, the $2\frac{1}{2}$ " x 0.119" pallet nail provided, on the average, a one-fifth higher immediate and delayed deckboard-stringer separation and shear resistance than the $2\frac{1}{4}$ " x 0.113" pallet nail. The $2\frac{1}{2}$ " x 15-gauge pallet staple provided, on the average, a 6% and 59%, respectively, lower immediate and delayed shear resistance than the $2\frac{1}{4}$ " x 0.113" pallet nail. According to these test data, from 1.1 to 2.5 pallet staples may replace the $2\frac{1}{4}$ " pallet nail; while from 1.3 to 3.0 pallet staples may replace the $2\frac{1}{2}$ " pallet nail (26). During tests on 48" by 40" eucalyptus pallets, no failures were observed during the static stiffness test up to a total load of 2000 lb. and only minor failures were noted during the impact rigidity test up to twelve free-fall drops. Furthermore, the average stiffness of the "standard" pallets, as described in the referenced report and assembled with $2\frac{1}{4}$ " or $2\frac{1}{2}$ " pallet nails or $2\frac{1}{2}$ " pallet staples and that of the "food" pallets, as also described in the referenced report and assembled with $2\frac{1}{4}$ " pallet nails were practically the same, varying as much as from -8% to +5% from the average values for the pallets tested. However, the average stiffness of the stapled pallets was 6% to 13% higher than that of the nailed pallets. In addition, the average rigidity of the nailed "standard" and "food" pallets was the same, varying only as much as from -2% to +3% from the average rigidity of the nailed pallets. On the other hand, the average rigidity of the stapled pallets was considerably lower than that of the nailed pallets (26). With respect to the analytical evaluation of pailets, a method was developed, during 1976, for use by pallet manufacturers who are continuously faced with the problem of providing a product of sufficient strength to perform as required, which is safe to use and low in cost (27). The design procedure uses graphs as an alternative to rather complex calculations. These methods are based on the use of three factors: (a) a pallet use factor, which depends on the conditions under which the pallet is used; (b) a pallet design factor, which refers to the characteristics of the pallet design; and (c) a material factor, which refers to the characteristics of the materials used. This analytical design procedure was found to be valid and conservative in a study of southern pine pallets, during which the predicted values for the cost per use, the safe load, and the economic life were compared with those obtained by pallet testing. The procedure was found to be conservative, since the computed values were lower than the test values in all instances under observation (28). A similar, however, simplified analytical procedure, based on the same engineering principles, was developed during 1977, for the prediction of pallet performance (29). Certain engineering practices were recommended which should be adhered to during the design of pallets. Three loading situations were considered and formulae were advanced covering the stiffness and load-carrying capacity of pallets under these conditions. The performance of wooden pallets is
influenced by the performance of the fasteners, such as nails and staples, which are most commonly used for pallet assembly (11). The deckboard-stringer separation resistance depends to a great extent on the holding power of the fasteners in the wood used. The pallet rigidity is affected considerably by the ductility and toughness of the fastener. Its driveability, especially into dense hardwoods, is influenced by its buckling resistance, which is directly related to its ductility and toughness. Ductility, pliability, and buckling resistance, as well as the brittleness of the fastener are properties which can be determined and quantified by testing the fastener with the "Morgan Impact Bend-Angle Nail Tester", the MIBANT device, according to established procedures (15, 21). Since the introduction of any quality control requires the establishment of qualitycontrol criteria, such criteria were suggested on the basis of the performance of MIBANT tests on numerous helically threaded pallet nails taken from many manufacturing lots (17). The tested nails could be separated into three distinct groups of nails: - a) "Hardened-steel nails" having MIBANT bend angles ranging from 8° to 28°; - b) "Stiff-stock nails" having MIBANT bend angles ranging from 29° to 46°; - c) "Soft nails" having MIBANT bend angles beyond 46°. The acceptance criteria also limit the number of partial and complete nail failures to 8% of the 25 samples randomly selected from each lot of nails. MIBANT test procedures for pallet staples have been suggested (21). However, no acceptance criteria have been advanced to-date. The design and construction of wooden warehouse and exchange pallets have been studied for many years. Improvements have been recommended and evaluated. Among the major improvements introduced are the use of (a) back-up deckboards placed directly next to the leading-edge deckboards (23, 26) and (b) appropriate numbers of helically threaded, instead of helically fluted, hardened-steel, instead of stiff-stock, nails (10, 13, 14, 16, 18, 19). The use of the back-up deckboard was found to increase by one-fifth the rigidity of 30% heavier mixed hardwood pallets of improved design. The use of hardened-steel nails was found to increase the pallet rigidity as much as two-thirds regardless of the wood species used. Since pallet rigidity may, under given conditions, be equated with pallet life, these improvements are highly significant from the pallet cost-per-use aspect (23). Information on the laboratory and field performance of stevedore pallets has not been found in the published literature. Thus, it appears that this study introduces a new dimension in the design and construction of stevedore pallets. On the other hand, they are basically similar to other captive warehouse pallets, with the stiffness resulting from the large size and weight and the inclusion of top and/or bottom deckboard wings in the design of stevedore pallets. #### MATERIALS #### Lumber The two lots of lumber used for the assembly of the deckboard-stringer joints and the pallets tested during this study were of the red-oak family from the southwest region of Virginia, purchased directly from a Montgomery County sawmill. The lumber was received at the Sardo Laboratory in green condition, planed to uniform cross-sections and subsequently stored in the Laboratory's 100% relative humidity chamber until used. Therefore, it was considered to have been green during its assembly into pallet joints and pallets. The oven-dry specific gravity (as determined according to a procedure described in the chapter on Test Procedures) of the pallet deckboards ranged from 0.50 to 0.68, with an average of 0.59 and a standard deviation of 0.06. The oven-dry specific gravity of the pallet stringers ranged from 0.60 to 0.78, with an average of 0.68 and a standard deviation of 0.04. The bar diagrams in Fig. 3 indicate that the randomly selected deckboards and stringers provided pallets of a comparable nature, since the pallet deckboards and stringers were of relatively uniform oven-dry specific gravity. # Nails Prior to the mass-production of helically threaded pallet nails in Brazil during 1977, $2\frac{1}{2}$ " helically fluted nails were predominantly used there for pallet assembly. Both types of nails, shown in Fig. 2, are readily available in Brazil at this time. These nails were tested at the Sardo Laboratory and used for the assembly of the tested joints and the pallets of both conventional and improved designs. In addition to these two types of Brazilian nails, two helically threaded nails, used in the U.S.A. for pallet assembly and shown also in Fig. 2, were tested during this study and used for the assembly of the deckboard-stringer joints as well as the pallets. Since the nail data obtained are of a fully comparative nature, the performance of the tested nails could be fully analyzed. The four different nails, numbered according to the VPI&SU Laboratory numbering system, are described in the following paragraphs: Nail a.— The Brazilian helically fluted nail (VPI&SU No. 2017) is of $2\frac{1}{2}$ " (length) x 0.143" (flute-crest diameter) size, with four helical flutes having an 80° flute angle, an 0.30"-diameter flat head, and a medium diamond point, and weighing 4.546 g. The MIBANT bend angles of 25 random samples, given in Appendix Table 16a, ranged from 29° to 36°, with an average of 32°. Therefore, this nail can be classified as a stiff-stock nail. Nail b.- The Brazilian pointless helically threaded nail (VPI&SU No. 2018) is of $2\frac{1}{2}$ " (length) x 0.127" (wire diameter) size, with three helical thread flutes having a 68° thread angle, an 0.142" thread-crest diameter, and a $\frac{1}{2}$ " clearance between thread and 0.287"-diameter umbrella head, and weighing 4.221 g. The MIBANT bend angles of 25 nail samples, given in Appendix Table 16b, ranged from 35° to 41° , with an average of 37° . Therefore, this nail can be classified as a stiff-stock nail. Nail c.- The short helically threaded nail (VPI&SU No. 1999-A), commonly used in the U.S.A., is of 2 9/16" x 0.119" size, with four helical thread flutes having a 59° thread angle, an 0.138" thread-crest diameter, a $\frac{3}{4}$ " clearance between thread and 0.276"-diameter flat head, and medium diamond point, and weighing 3.800 g. The MIBANT bend angles of 25 nail samples, given in Appendix Table 16c, ranged from 15° to 19° , with an average of 17° . Therefore, this nail can be classified as a hardened-steel nail. Nail d.- The longer helically threaded nail (VPI&SU No. 1785) is of 3" \times 0.120" size, with four helical thread flutes having a 63° thread angle, an 0.136" thread-crest diameter, and a $\frac{7}{8}$ " clearance between thread and 0.316" flat-topped umbrella head. It is pointless and weighs 4.589 g. The MIBANT bend angles of 25 nail samples, given in Appendix Table 16d, ranged from 12° to 25°, with an average of 16°. Therefore, this nail can be classified as a hardened-steel nail. # Deckboard-Stringer Joints Each deckboard-stringer joint was assembled with a single nail fastening the matched, clear, green, $1" \times 1\frac{3}{4}" \times 6"$, deckboard specimens across a clear, green 2.3" \times 3.6" stringer of expropriate length (48"). For matching purposes, the 6" deckboard specimens were sawn consecutively from representative deckboard strips of 63" length. The joints with the four nails tested were located in sequence next to each other and spaced $3\frac{1}{4}$ " center-to-center along the stringers. The joints tested for nail withdrawal were adjacent to the joints tested for nail shear along the stringer length. Ten replicate joints were made of wood from randomly selected deckboards and stringers. This resulted in data as representative of the wood used in this study as were feasible with decuple replications. Because of the matching procedure used, the deckboard-stringer joints yielded fully comparative individual and average test values for the four nails tested for withdrawal and shear resistance. Six-week seasoning of the assembled joints prior to testing resulted in an average moisture content of 9.4% for the deckboards and 29.8% for the stringers during the deckboard-stringer separation tests and 10.6% for the deckboards and 31.3% for the stringers during the deckboard-stringer shear tests. The average oven-dry specific gravity was 0.64 for the deckboards and 0.67 for the stringers of the deckboard-stringer separation joints and 0.70 for the deckboards and 0.72 for the stringers of the deckboard-stringer shear joints. #### Pallets The pallets of both conventional and improved designs were reversible, double-face, wing-type, two-way entry pallets, having the same overall 48" x 63" dimensions, as shown in Fig. 1. The pallets were accurately assembled with green red oak at the Sardo Laboratory. During assembly of the pallets, the best stringers were used for the outer stringers. The best deckboards of those at hand were chosen for the leading-edge deckboards and the better edges of the leading-edge deckboards were used for the outer edges. The inner deckboards were randomly selected. Seasoning of the pallets took place in the Laboratory (nominal 50% relative humidity at 70°F, temperature) over a period of at least nine weeks prior to testing. The moisture content and the oven-dry specific gravity of the top center deckboard and of the center stringer were determined, after the testing of the pallets had been completed, by securing small samples. After testing the pallets to failure, their moisture content ranged from 9.3% to 10.7%, with an average of 9.8%, for the top center deckboards, and from 14.8% to 27.6%, with an average of 21.6%, for the center stringers. The oven-dry specific gravity of the top center deckboards ranged from 0.50 to 0.68, with an average of 0.59, and that of the center stringers ranged from
0.60 to 0.78, with an average of 0.68. (For further details, see the Section on Lumber.) The pallets of conventional design, shown in Fig. 1, had the same overall dimensions, the same lumber dimensions, and the same number and location of nails as the pallets being used at Brazilian docks. The quantity and size of the green pallet shook and the number of nails used for the assembly of pallets of conventional design are shown in Table 3. The pallets of improved design, also shown in Fig. 1, utilize top and bottom follow-up deckboards placed tightly against the leading-edge deckboards during pallet assembly. As a result of seasoning of the originally green shook after pallet assembly, the follow-up deckboard is eventually spaced approximately $\frac{1}{4}$ " from the leading-edge deckboard. Despite this spacing, the combination of the two boards at each pallet end is highly effective in increasing the pallet rigidity and its resistance to such forces as are exerted by the forklift truck. Because of the tight spacing of the first two top and bottom deckboards at each pallet end, it was found necessary to include an additional deckboard in each pallet face in order to avoid excessive spacing for the inner deckboards. The pallet of improved design also used an additional nail for each deckboard-stringer joint because of the undernailing of the pallets of conventional design (12). This improvement was found highly desirable because of the large size and weight of the pallet with its shook both in green and seasoned conditions. The material requirements for the pallet of improved design are also given in Table 3. A comparison of the material requirements of pallets of conventional and improved designs indicates that the pallets of improved design required 12% more lumber and 64% more nails than those of conventional design. A detailed description of these pallets is given in Tables 4a and 4b. The average assembly and test weights, in pounds, of the pallets of conventional and improved designs are summarized in Table 5. Consequently, the improved pallets were, on the average, 12.7% heavier during assembly and during the final testing phase than the conventional pallets if no adjustment is made for the difference in lumber from the two batches received for this study. If, on the other hand, weight adjustments are made, the improved pallets were, on the average, 14.0% heavier than the conventional pallets. Furthermore, on the average, the pallets of conventional and improved designs had, by the final testing phase, lost 36% of the initial pallet weights as a result of seasoning in the Laboratory. To facilitate pallet identification, all test pallets were sequentially coded according to the following convention: - A) Conventional design - B) Improved design - a) $2\frac{1}{2}^{n}$ fluted nail as used in Brazil - b) $2\frac{1}{2}$ threaded nail as used in Brazil - c) $2\frac{1}{2}$ threaded nail as used in U.S.A. - d) 3" threaded nail as used in U.S.A. - 1-5) Replications Thus, Pallet Aal is a pallet of conventional design, assembled with the Brazilian fluted nail, and representing the first of five replications. #### EXPERIMENTAL DESIGN #### Deckboard-Stringer Joints An analysis of variance was used for the decuple data obtained both for the deckboard-stringer separation and shear resistance of the joints assembled with the four nails tested. The purpose of such a statistical analysis was to determine whether the mean values differed significantly and to make comparisons between the means. #### **Pallets** A two-factor analysis of variance and a Duncan's multiple range test were chosen as the statistical models for the evaluation of the research data covering the pallets of conventional and improved designs on the one hand and the four nails used for the assembly of the pallets on the other hand. This statistical analysis was applied to the data on the initial static stiffness, impact rigidity, impact deckboard-stringer separation resistance, follow-up static stiffness, and static ultimate load-carrying capacity of the quintuplicate pallets. The statistical design used for the 2 (designs) \times 4 (nails) \times 5 (replications) = 40 pallets tested during this study is given in Table 6. #### TEST PROCEDURES #### Minor Tests # 1) Moisture Content of Pallet Shook After completion of the tests on the deckboard-stringer joints as well as the tests on each pallet, small clear samples were sawn from the specimens and weighed immediately and after oven-drying at approximately 101° C. for a period of not less than 24 hours (6). In the case of the joints, all deckboard samples as well as all stringer samples were treated as single samples. This resulted in the determination of average moisture contents for both the deckboards and the stringers used. In the case of the pallets, small clear samples were sawn from the center part of the top center deckboard and center stringer of each pallet according to established Laboratory procedure, and each was weighed immediately and after oven-drying. Thus, the moisture content was obtained for one deckboard and one stringer of each pallet. #### 2) Oven-Dry Specific Gravity of Pallet Shook After weighing each oven-dry specimen, its volume was determined by using the VPI&SU Mercury Volumeter (7, 25). The specific gravity of the pallet shook used was determined on the basis of oven-dry weight and volume of the samples. # Major Tests # 1) Deckboard-Stringer Joints Deckboard-stringer joints were assembled and tested to provide basic information on their performance. The static deckboard-stringer separation resistance was determined six weeks after the assembly of the decuple red-oak joints with the four nails under investigation, with a single nail per joint. This was accomplished by holding the stringer in a static position and applying a normal force to the deckboard in the axial direction of the nail at a constant rate of motion of 0.100 inches per minute of the movable crosshead of a 3000-lb. capacity Tinius Olsen Electomatic testing machine. Whenever a head pull-through failure occurred, the fastener was subsequently tested by gripping the protruding nail shank and determining the axial withdrawal resistance of the nail. The static deckboard-stringer shear resistance was determined in a similar manner with similar joints by holding the stringer in a static position and applying an axial force in the plane and parallel with the grain of the deckboard perpendicular to the nail axis and the grain of the stringer. The ultimate test load and the mode of failure were observed and recorded for the eighty joints tested. #### 2) Pallets Whole pallets were tested since the required information cannot be obtained in any other way. The following tests were performed in sequence, as shown in Figs. 4a to 4f, on each of the forty pallets of conventional and improved designs, assembled with the four nails under investigation. #### a) Initial Pallet Stiffness as Determined by Static Load-Deflection Test The basic test procedure is described in American National Standard 1977, ANSI-MH 1.4.1 - 8.3 -- Combined Deckboard, Stringer, and Pallet Stiffness and Strength Test (3). This test procedure was used to determine the relative stiffness of the deckboards, stringers, and complete pallets supported at the four pallet corners and loaded at the pallet center. The test frame has four 2" \times 2" bearing plates supporting the four pallet corners, a 12" \times 14" \times $\frac{1}{2}(0.56)$ " steel plate with a spherical loading device, and five linear position transducers allowing deflection recordings in one thousandth of an inch up to a maximum of 6" (Waters Manufacturing, Wayland, Massachusetts 01778). The sensors were located at the midpoints of the pallet sides and ends and directly below the pallet center. In order to provide sufficient space for the installation of the sensors, the wings of the top center deckboards of the pallets of improved design had to be sawed off prior to the performance of the initial stiffness tests. In order to ascertain that the loading was uniform throughout the testing and to be able to observe any creep, the load was applied with a computer-controlled motorized 6000-lb, capacity pump in increments of 200 lb., with each step load maintained automatically for a period of two minutes, up to a load of 2000 lb., when the test was terminated. The average load-deflection curves for the pallet sides and the pallet ends as well as the load-deflection curve for the pallet center were automatically plotted during the progress of the test. The initial and final deformations at every load step provided the information for the plot. # b) Pallet Rigidity as Determined by Impact Free-Fall Cornerwise Drop Test The test procedure is described in American National Standard 1977, ANSI-MH 1.4.1 – 4.2 — Corner Drop of Vertically Suspended Pallet (1). The drop test simulates impact racking forces imposed by dropping the pallet onto one of its four corners during pallet handling. Such dropping may occur during unstacking of loaded and unloaded pallets as well as during their removal. The test was performed by dropping the pallet six times from a height of $33\frac{1}{2}$ " above the level surface of a heavy concrete mass onto one of the pallet corners. The unloaded pallet was suspended at one corner in such a manner that the diagonal across the pallet face from the suspended corner to the impact corner was vertical. The pallet was allowed to fall freely from its original position onto the impact surface. After the impact had occurred, the pallet was restrained to prevent a secondary fall. Prior to the first drop and after each subsequent drop, the lengths of each of the two top-deck and two bottom-deck diagonals were measured with a graduated scale, measuring one hundredth of an inch, and recorded. The test was terminated after dropping the pallet for the sixth time. # c) Resistance of
Pallet to Forces Exerted by Forklift Truck as Determined by Impact Incline Deckboard-Stringer Separation Test The impact incline test is described in American National Standard 1977, ANSI-MH 1.4.1 - 5.6 -- Incline Impact Deckboard-Stringer Separation Test (2). The purpose of this test is to simulate the forces imposed by the forks and fork heels of a lift truck, when they strike the top leading-edge deckboard during and upon termination of fork entry. The test is performed to determine the resistance to damage of the pallet's top leading-edge deckboard and its leading edge as well as the resistance of the top leading-edge deckboard to its separation from the stringers as a result of forces applied by the lift truck. The pallets were tested in an apparatus which is described in ASTM Standard D880-73 (5) and modified by affixing forks as shown in ANSI MH 1.4.1 - 5.6.2 (2). The dolly of the tester was raised up the incline to leave a 30" space between the dolly front and the fork heel. The pallet was placed on the dolly in such a way that the forward leading edge of the pallet was parallel with the forward leading edge of the dolly and overhanging it by two inches. Furthermore, the bottom leading-edge deckboard of the pallet next to the "C" sensor, shown in Fig. 1, during the initial static stiffness test was placed in such a way as to become the top leading-edge deckboard which was to receive the impact. A 410-lb, weight box was placed onto the pallet in such a manner that the trailing upper edge of the 40"-wide and 32"-long box was flush with the trailing upper edge of the pallet and the kinetic energy of the box was transferred at impact directly to the stringers. Failure was considered to have occurred when the forks had destroyed the leading edge of the pallet and/or when the top leading-edge deckboard was torn at least from two stringers. At that time, the test was terminated. Immediately after test termination, the tested pallet was repaired. This was accomplished by completely separating the partially separated leading-edge deckboard of the conventional pallet and the partially separated leading-edge deckboard and its back-up deckboard of the improved pallet from the three stringers and by renailing these deckboards to the three stringers. Under given conditions, one or both of the damaged deckboards were replaced and fastened to the three stringers with the appropriate new nails. The exceptions were pallets Ba1, Bb1, and Bc1. The leading-edge deckboard of pallet Ba1 was renailed with eight nails and the follow-up deckboard was renailed with three nails, since the two deckboards were not removed completely from the three stringers. Similarly, the follow-up deckboard of pallet Bb1 was renailed with six nails and the follow-up deckboard of pallet Bc1 was not removed from the three stringers, hence, was not renailed. # d) Follow-Up Pallet Stiffness as Determined by Follow-Up Static Load-Deflection Test The purpose of this test is to determine whether the impact free-fall cornerwise drop test and the subsequent incline impact deckboard-stringer separation test influenced the stiffness of the pallet after its repair. Any difference between the initial and the follow-up stiffness test values can be attributed to loss in stiffness as a result of a simulated field service by the pallet and the effect of the repair. This test was performed with the pallet located in the test rack in the same way as during the initial stiffness test. Furthermore, the follow-up test was performed in the same manner as the initial stiffness test, except that the test was terminated only after a load of 6000 lb. had been applied. #### e) Pallet Load-Carrying Capacity as Determined by Static Load-Deflection Test The purpose of this test is to determine the pallet's ultimate load-carrying capacity in the same manner as the pallet's stiffness, except that the first 6000-lb. load was applied in a single step and that each subsequent 200-lb. load was applied only after a two-minute constant-load interval. Furthermore, a 20,000-lb. capacity hand-operated pump was used for loading instead of the computer-controlled motorized pump used for the determination of the pallet stiffness. During this test, no deflection readings were recorded. The type of failure was observed and recorded. #### RESULTS AND DISCUSSION ### Deckboard-Stringer Joints # 1) Static Deckboard-Stringer Separation Resistance in Direction of Nail Axis The detailed static ultimate nail-withdrawal and deckboard-stringer separation-resistance data are presented in Appendix Table 17a. The average nail-withdrawal values are summarized in Table 7. In comparison with the withdrawal resistance of the $2\frac{1}{2}$ " helically fluted nail (a), the $2\frac{1}{2}$ " helically threaded nail (b) performed 44% better and the $2\frac{1}{2}$ " and 3" helically threaded nails (c and d) performed 61% and 111%, respectively, better in resisting axial withdrawal forces. The efficiency of the nails, on a uniform weight basis, indicates that, in comparison with the efficiency of the $2\frac{1}{2}$ " helically fluted nail (a), the $2\frac{1}{2}$ " helically threaded nail (b) was 56% more efficient, and the $2\frac{1}{2}$ " and 3" helically threaded nails (c and d) were 93% and 109%, respectively, more efficient in resisting axial withdrawal forces. These findings are presented graphically in the bar diagrams of Fig. 5. The three threaded nails performed considerably better than the fluted nail. The $2\frac{1}{2}$ " and 3" threaded nails (c and d) performed similarly on the basis of uniform shank penetration into the nailing member. The helically threaded nail (b) could, of course, have been provided with a considerably more effective thread, which would have increased its holding power and the energy required for driving. Increasing its length and head diameter would also have increased its effectiveness. # 2) Static Deckboard-Stringer Shear Resistance in Direction Perpendicular to Nail Axis The detailed static ultimate deckboard-stringer shear-resistance data are presented in Appendix Table 17b. The average shear values are also summarized in Table 7. In comparison with the shear resistance of the deckboard-stringer joint assembled with the $2\frac{1}{2}$ " helically fluted nail (a), that of the joint assembled with the $2\frac{1}{2}$ " helically threaded nail (b) was 28% higher and that of the joints assembled with the $2\frac{1}{2}$ " and 3" helically threaded nails (c and d) was 35% and 70%, respectively, higher. The efficiency of the nails, on a uniform weight basis, indicates that, in comparison with the efficiency of the $2\frac{1}{2}$ helically fluted nail (a), the $2\frac{1}{2}$ helically threaded nail (b) is 37% more efficient and the $2\frac{1}{2}$ and 3" helically threaded nails (c and d) are 61% and 69%, respectively, more efficient in resisting shear forces. These findings are presented graphically in the bar diagram of Fig. 6. As in withdrawal, the three threaded nails performed considerably better than the fluted nail, with the 3" nail providing higher shear resistance than the $2\frac{1}{2}$ " nail of same design. #### **Pallets** #### 1) Initial Pallet Stiffness as Determined by Static Load-Deflection Test The detailed load-deflection data are presented in Appendix Tables 18a and 18b. The average data are given in Appendix Table 19. The average load-deflection curves are plotted in Fig. 7. During these tests, no failures were observed. The average cumulative load-deflection values, throughout the test range from 0 to 2000 lb., for the quintuplicate pallets of conventional and improved designs, assembled with the four types of nails under study, are presented in Table 8. The material for the pallets of improved design came from two lots of red oak. An examination of the pallet weights revealed a significant difference between the weights of the pallets assembled with the lumber of the two lots. In order to eliminate the influence of the differences in pallet weights on pallet stiffness, all average cumulative deflection values for the seven pallets of improved design assembled with lumber from the second lot (Nos. Bc4, Bc5, and Bd1 to 5) were adjusted, as is shown in Appendix Table 20, for differences in pallet weights according to D (in in.) = 46.23 - 0.198 W (in lb.). This least-square line regression relationship between pallet weight and cumulative deflection values is indicated in Fig. 8. The relatively high value of the correlation coefficient justified this adjustment. The weights of the 13 remaining pallets of improved design and of the 20 pallets of conventional design, having been assembled with lumber from the first lot, had similar narrow ranges of weight distribution, as is shown in Fig. 8. An adjustment of the cumulative deflection values for these pallets had no justification. (Likewise, no adjustments were justified for the test values emanating from the rigidity, deckboard-stringer separation resistance, follow-up stiffness, and ultimate load-carrying capacity tests on the pallets of both conventional and improved designs.) In the light of the data presented, the use of the four types of nails was of no influence on the initial static stiffness of the pallets of conventional and improved designs. On the other hand, the 12% heavier pallets of improved design proved to be, on the average, 15% stiffer than those of conventional design. The average deflections, in 1/1000 inch, of all pallets of conventional and improved designs per 100 lb. of static load applied at the pallet center, according to the deflections observed up to a test load of 2000 lb., are presented in Table 9. These findings are shown graphically in the bar diagram of Fig. 9. In the light of these observations on quintuplicate pallets of conventional and improved designs, assembled with the four nails under scrutiny, the average deflections of the centers of the pallet sides per 100 lb. of load
amounted to 0.007"; those of the centers of the pallet ends amounted to 0.031" and 0.027", respectively; and those of the pallet centers amounted to 0.035" and 0.031", respectively. A statistical analysis of the adjusted initial static stiffness data is presented in Appendix Table 21. This analysis confirmed the conclusions drawn from the previous evaluation of the test data, as can be observed from the following statements: - 1) The initial static stiffness of the pallets of improved design, being 15% higher than that of the pallets of conventional design, was significantly different at the 5% level of significance from that of the pallets of conventional design. - The nails did not influence the pallet performance. - 3) No interaction existed between nails and designs. # 2) Pallet Rigidity as Determined by Impact Free-Fall Cornerwise Drop Test The detailed load-deformation data are presented in Appendix Tables 22a and 22b. The average changes in length of the diagonals for each pallet are plotted against the number of free falls in Fig. 10. The grand-average changes in length as well as the percentile distortions, that is, the percentages of distortions based on the original dimensions of the pallets assembled with each type of nail, are given in Appendix Table 23 and presented graphically in Fig. 11. During these tests, all pallets performed without major failures. However, three pallets of conventional design and two pallets of improved design were damaged by splitting of the leading-edge deckboards. Furthermore, some of the $2\frac{1}{2}$ " and 3" threaded nails (c and d) backed out or failed, especially in pallets of conventional design. Unexpectedly, the $2\frac{1}{2}$ " threaded non-hardened Brazilian nail (b) performed better than the $2\frac{1}{2}$ " threaded hardened-steel nail (c) used in the U.S.A. This may be explained by the lower flexibility of the latter nail in comparison with that of the former nail. The relatively large number of failures of the $2\frac{1}{2}$ " hardened-steel nail (c) during the performance of the free-fall drop tests is one indication of this finding. The average percentile distortion of the quintuplicate pallets of conventional and improved designs after the sixth drop and the cumulative average length changes of the pallet diagonals up to and including the sixth drop are presented in Table 10. These data are presented graphically in the bar diagrams of Fig. 12. Based on these data, the pallets of both conventional and improved designs assembled with the $2\frac{1}{2}$ " threaded nails (c) were most rigid; those assembled with the 3" threaded nails (d) were second best; those assembled with the $2\frac{1}{2}$ " threaded nails (b) were the third best; and those assembled with the $2\frac{1}{2}$ " fluted nails (a) were least rigid. Furthermore, in comparison with the pallets of conventional design assembled with the four different nails, the corresponding pallets of improved design were 15%, 16%, 27%, and 24% more rigid. The test findings indicate that the pallets of conventional design assembled with the $2\frac{1}{2}$ " fluted nails (a) were less rigid than all other pallets. Specifically, the pallets of conventional design assembled with the $2\frac{1}{2}$ " threaded nails (b) and $2\frac{1}{2}$ " and 3" threaded nails (c and d) were 8%, 46%, and 42%, respectively, more rigid and the pallets of improved design assembled with the $2\frac{1}{2}$ " fluted nails (a), $2\frac{1}{2}$ " threaded nails (b), and $2\frac{1}{2}$ " and 3" threaded nails (c and d) were 16%, 24%, 60%, and 55%, respectively, more rigid. An analysis of variance performed on the sums of average changes in the lengths of the diagonals is shown in Appendix Table 24. It is evident that the rigidity of the pallets of both designs as well as the rigidity of the pallets assembled with the four different nails were significantly different at the 5% level. On the other hand, there was no interaction between the four different nails and the two different designs at the 5% level of significance. The Duncan's test for equality of means, applied to the sums of average changes in the lengths of the diagonals, in inches (see Table 10), revealed that all the means were significantly different at the 5% level, except for the rigidity of pallets of conventional design assembled with the $2\frac{1}{2}$ and 3" threaded nails (c and d). Thus, the highest rigidity was obtained for the pallets of improved design assembled with the $2\frac{1}{2}$ " threaded nail (c), which was 60% higher than the rigidity of the pallets of conventional design assembled with the Brazilian nail (a). # 3) Resistance of Pallets to Forces Exerted by Forklift Truck as Determined by Impact Incline Deckboard-Stringer Separation Test The detailed impact incline deckboard-stringer separation test data are presented in Appendix Tables 25 and 26. The numbers of runs and hits of each pallet are shown in the bar diagram of Fig. 13. The averages and grand-averages of the numbers of runs are presented in Fig. 14. Prior to testing, the leading-edge deckboard of pallet Bc2 had a 12" crack and its back-up board had a 20" crack. The leading-edge deckboard of pallet Ba5 had a 14" crack. The leading-edge deckboard and the back-up board of pallet Bd3 had 2" splits. The leading-edge deckboard of pallet Bd4 was cupped. During the tests, the leading-edge deckboards of 38 of the 40 pallets were torn off two stringers. Only in two instances, pallet Ad5 of conventional design and pallet Bb3 of improved design had their leading-edge deckboards destroyed by the forks. Additional splits were observed during the testing of pallets of both designs. In pallets of conventional design, splits occurred at the beginning of the test and, in the pallets of improved design, splits occurred only after the leading-edge deckboard and the back-up deckboard had been torn off the center stringer just prior to test termination. The major test findings are presented in Table 11. Based on these test results, the pallets of both conventional and improved designs, assembled with 3" threaded nails (d) proved to be most resistant to impact deckboard-stringer separation; those assembled with $2\frac{1}{2}$ " threaded nails (b) were the second best; those assembled with $2\frac{1}{2}$ " threaded nails (c) were the third best; and those assembled with $2\frac{1}{2}$ " fluted nails (a) were least resistant to impact deckboard-stringer separation forces. In a comparison of the performance of all 20 pallets of conventional design, the corresponding pallets of improved design were, on the average, 23, 17, 17, and 6 times, respectively, more effective. With the pallets of conventional design assembled with $2\frac{1}{2}$ " fluted nails (a) serving as basis of comparison, the pallets of conventional design assembled with $2\frac{1}{2}$ " threaded nails (b) and $2\frac{1}{2}$ " and 3" threaded nails (c and d) appear to have been equally effective, with the average test values having been only 3, 3, and 11 times, respectively, higher. Furthermore, the pallets of improved design assembled with $2\frac{1}{2}$ " fluted nails (a), $2\frac{1}{2}$ " threaded nails (b), $2\frac{1}{2}$ " and 3" threaded nails (c and d) were, on the average, 23, 52, 43, and 66 times, respectively, more effective than the pallets serving as basis of comparison. Whereas the difference in performance of pallets of conventional and improved designs was relatively small, however, significant during the initial stiffness and rigidity tests on these pallets, the difference during the deckboard-stringer separation tests was very large and highly significant from the practical viewpoint. According to an analysis of variance and Duncan's test, presented in Appendix Table 27, the above observations were confirmed, as is shown by the following statements: - 1) The two pallet designs differed in performance at the 5% significance level. - 2) The average numbers of runs were different for pallets assembled with the four different nails at the 5% significance level. - 3) Some interaction existed between the pallets of both designs assembled with the four types of nails at the 5% significance level; but not at the 1% significance level. - 4) According to Duncan's test, no significant difference was shown at the 5% level among the pallets of conventional design assembled with the four different nails. On the other hand, a significant difference was shown at the same level among the pallets of improved design assembled with the four different nails. Furthermore, the pallets of improved design assembled with the $2\frac{1}{2}$ " threaded nail (b) used in Brazil and the 3" threaded nail (d) performed similarly and better than the other pallets of improved design. Also, the pallets of conventional design assembled with the 3" threaded nails (d) and the pallets of improved design assembled with the $2\frac{1}{2}$ " fluted nails (a) performed in a similar manner. The same was observed for pallets of improved design assembled with the $2\frac{1}{2}$ " threaded nails (b and c) used in South and North America. Thus, according to the impact incline deckboard-stringer separation tests, pallets of conventional design assembled with the best (3" threaded) nail can replace pallets of improved design assembled with the poorest $(2\frac{1}{2}"$ fluted) nail. #### 4) Follow-Up Pallet Stiffness as Determined by Follow-Up Static Load-Deflection Test Detailed load-deflection data up to a test load of 6000 lb. --- obtained after the performance of the initial static stiffness test up to a concentrated load of 2000 lb., the rigidity test up to six free-fall drops, and the subsequent incline impact deck-board-stringer separation test, followed by pallet repair --- are presented in Appendix Tables 28 and 29. The average load-deflection curves are presented in Fig. 15. Except in two cases, no failures were observed during these tests. The exceptions were pallet Ad3 with
the center stringer broken at a knot and pallet Ad2 with one top deckboard completely separated from the center stringer. The average cumulative load-deflection values throughout the test ranges from 0 to 2000 lb. and from 0 to 6000 lb. for the quintuplicate pallets of conventional and improved designs are presented in Table 12. During the follow-up stiffness tests, the deflection of the pallets within the 0 to 2000-lb. test range was higher and, therefore, the stiffness of the pallets was lower than the corresponding values observed during the initial stiffness tests, as is indicated in Table 13. The pallets of both conventional and improved designs appear to have been equally effective, with the average test values having been only 7% and 3%, respectively, lower than those during the initial stiffness despite the performance of the rigidity test, the incline impact deckboard-stringer separation test, and the pallet repair prior to the performance of the follow-up stiffness test. The stringers of the pallets of improved design appear to have been as effective as those of conventional design during the initial static pallet stiffness tests, with the average test values being 5% stiffer. The stringers of the pallets of improved design were also equally effective as those of conventional design during the follow-up pallet stiffness tests, however, with the average test values being 6% lower. Whereas the deckboards of the pallets of improved design were 16% stiffer during the initial static stiffness tests than those of conventional design, the deckboards of pallets of improved design were 18% stiffer during the follow-up stiffness tests within the same test range. Furthermore, although the pallets of improved design were, on the basis of the deflection of the pallet sides, pallet ends, and pallet center, 15% stiffer during the initial static stiffness tests than the pallets of conventional design, the pallets of improved design were 16% stiffer during the follow-up stiffness tests within the same test range. In the light of these findings, the stiffness of the stevedore pallets of conventional and improved designs were not affected to any great extent by the performance of the rigidity test and incline impact deckboard-stringer separation test prior to the performance of the follow-up stiffness test and may have been compensated for by the limited pallet repair prior to the performance of the follow-up stiffness test. The analysis of variance of the data for the follow-up static load-deflection tests up to a load of 2000 lb. is presented in Appendix Table 20. On the basis of the data presented in this Table, the following conclusions could be advanced: - The two pallet designs differed significantly in performance at the 5% significance level, confirming that the reported 15% and 16% increased stiffness of pallets of improved design versus that of pallets of conventional design is indeed a difference. - 2) The effectiveness of the four nails was significantly different at the 5% significance level. This can be explained by the fact that, during the free-fall drop test and the incline impact test, some of the nails broke, a fact which was of influence on the follow-up stiffness of the pallets. - 3) No interaction existed between nails and design at the 5% significance level. # 5) Pallet Load-Carrying Capacity as Determined by Static Load-Deflection Test The detailed static ultimate load-carrying capacity of the tested pallets, when supported at their four corners and loaded at the center, is presented in Appendix Table 31. The average values for the ultimate test loads for the quintuplicate pallets are shown in Table 14. The test on the static ultimate load-carrying capacity of the pallets was terminated when a major failure occurred or when the pallet could no longer support the test load reached previously. For almost all the pallets tested, the ultimate load was reached when two or more top or bottom deckboards broke. The exceptions were three pallets of conventional as well as two of improved designs (Aa2, Aa3, Ad2, Bc1, and Bc2), where the ultimate loads were limited by failure of the center stringer. The pallets of improved design could, on the average, support an approximately 20% higher ultimate load than the pallets of conventional design, if supported at their four corners and loaded at the center. The analysis of variance, presented in Appendix Table 32, indicated that - the static ultimate load-carrying capacity of the pallets of improved design was different at the 5% significance level from that of the pallets of conventional design; - 2) the four nails did not influence the pallet effectiveness at the 5% significance level; - 3) no interaction existed between nails and design at the 5% significance level. When the ultimate test load per pallet was correlated with the pallet weight, the average specific ultimate test load supported by the pallet of improved design was only 7% higher than that of the pallet of conventional design. This observation confirmed the previous experience that density of the pallet shook was of lesser importance on the ultimate load-carrying capacity of a pallet than the shook's knots, grain deviations near knots, cross-grain, etc. (24). #### LIMITATION AND APPLICATION OF DATA Since pallets of designs different from those studied may perform in a significantly different manner, the data presented need to be limited to the two designs investigated. The pallets tested during this study were assembled with wood of one species group, red oak, which is one of the most common species groups used for pallet assembly in the U.S.A. The performance of red oak is, however, not representative of many of the other wood species used for pallet assembly. Four nails were selected for the assembly of the pallets under scrutiny, in order to obtain data which provide information on the influence of these nails on pallet performance. The use of similar nails from different production lots and of different nails may result in different pallet performance. In the light of the above, the application of the presented data to pallets of different designs, made of different woods, and/or assembled with different nails is limited. The test procedures used in this study yield data which are limited in their application. Some of these test procedures simulate certain field conditions, while others are specifically designed to yield representative data of a fully comparative nature, which are applicable only to given field conditions and not necessarily to others. Therefore, the findings must be used with discretion and should not be considered applicable to any and all situations encountered. The data obtained during this study provide information which makes it possible to demonstrate how and to what extent stevedore pallets of conventional design and construction may be improved. This is of importance in the light of failures of innumerous stevedore pallets in use or their performance which is so often below justified expectations. Thus, it is demonstrated how and to what extent conventional stevedore pallets can be improved by the introduction of a basic design change and by the use of improved fasteners. Both improvements may, under given conditions, be incorporated to advant age also in pallets of other designs and constructions. Yet, the extent of a given improvement may be different in magnitude and nature under different environmental conditions. Certain improvements may be achieved by using, for instance, four stringers instead of three, with the two inner stringers possibly of smaller cross-section than the conventional center stringer. Such a step may make it feasible to reduce the thickness of the deckboards without reducing the pallet performance below expectations, thereby saving lumber at the cost of the use of an increased number of deckboard-stringer fasteners and of labor if the nails are hammer- or gun-driven and not machine-driven. In such a design change, the presented data may be indicative of what might be expected, provided full consideration is given to the nature of the proposed change or changes in design and construction. #### SUMMARY - 1) The tested pallets of both conventional and improved designs were heavy. Their average assembly weights amounted to 217 lb., with a standard deviation of 2.8 lb., in the case of pallets of conventional design; and to 245 lb., with a standard deviation of 4.6 lb., in the case of pallets of improved design. The average weights of these pallets of conventional and improved designs after the performance of all tests were 138 lb., with a standard deviation of 2.2 lb., and 156 lb., with a standard deviation of 3.0 lb., respectively. Consequently, the pallets of conventional and improved designs lost, on the average, 36% of their assembly weight during seasoning. - 2) The testing of the deckboard-stringer joints indicated that, both during the static deckboard-stringer separation-resistance test and during the static deckboard-stringer shear-resistance test, the 3" threaded hardened-steel nails (d) performed best, the $2\frac{1}{2}$ " threaded hardened-steel nails (c) performed second best, the $2\frac{1}{2}$ " threaded stiff-stock nails (b) performed third best, and the $2\frac{1}{2}$ " fluted stiff-stock nails (a) offered the least resistance to separation and shear forces. - 3) The testing of the two types of pallets revealed the following: - a) The average initial stiffness of the 12% heavier pallets of improved design was 15% higher than that of the pallets of conventional design. Furthermore, the four different nails tested influenced the initial stiffness of the pallets of either design in the same manner. - b) The testing of the two types of pallets for their rigidity indicated that those assembled with the $2\frac{1}{2}$ " threaded nails (c) were the most rigid; those assembled with the 3" threaded nails (d) performed second best; those
assembled with the $2\frac{1}{2}$ " threaded nails (b) performed third best; and those assembled with the $2\frac{1}{2}$ " fluted nails (a) were the least rigid. In addition, the pallets of conventional design assembled with the $2\frac{1}{2}$ " fluted nails (a) were less rigid than all other pallets tested. Specifically, the pallets of conventional design assembled with the $2\frac{1}{2}$ " threaded nails (b) and $2\frac{1}{2}$ " and 3" threaded nails (c and d) were 8%, 46%, and 42%, respectively, more rigid, and the pallets of improved design assembled with the $2\frac{1}{2}$ " fluted nails (a), $2\frac{1}{2}$ " threaded nails (b), and $2\frac{1}{2}$ " and 3" threaded nails (c and d) were 16%, 24%, 60%, and 55%, respectively, more rigid. - c) The testing of the pallets for their impact incline deckboard-stringer separation resistance revealed that the pallets of both conventional and improved designs assembled with 3" threaded nails (d) provided optimum resistance; those assembled with $2\frac{1}{2}$ " threaded nails (b) were second best; those assembled with $2\frac{1}{2}$ " threaded nails (c) were third best; and those assembled with $2\frac{1}{2}$ " fluted nails (a) provided least resistance. Using the pallets of conventional design assembled with the $2\frac{1}{2}$ " fluted nails (a) as the basis of comparison, the pallets of improved design assembled with the $2\frac{1}{2}$ " fluted nails (a), $2\frac{1}{2}$ " threaded nails (b), $2\frac{1}{2}$ " and 3" threaded nails (c and d) were, on the average, 23, 52, 43, and 66 times, respectively, more effective. - d) The average follow-up static stiffness of the pallets of improved design was 16% higher than that of the pallets of conventional design within the 0 to 2000-lb. and 0 to 6000-lb. load ranges. In addition, the follow-up stiffness of the stevedore pallets of improved and conventional designs was not affected to any great extent by the performance of the rigidity test and the impact incline deckboard-stringer separation test prior to the performance of the follow-up stiffness test. Furthermore, the four different nails were of same influence on the performance of the pallets of both conventional and improved designs. - e) The average ultimate static load-carrying capacity of the pallets of improved design was 20% higher than that of the pallets of conventional design. During this test, the pallet performance was influenced in the same manner by the four nails tested. Hence, based on all tests performed, the pallets of improved design were superior to those of conventional design. Based on the rigidity test, the pallets of improved design assembled with the $2\frac{1}{2}$ " threaded hardened-steel nails (c) used in the U.S.A., were the best pallets and based on the deckboard-stringer separation test the pallets of improved design assembled with the 3" threaded hardened-steel rails (d) were better than all the pallets tested. On the average, in comparison with the pallets of conventional design, the pallets of improved design were one-sixth stiffer during the initial and follow-up stiffness tests, one-fifth more rigid during the drop test, one-fifth stronger during the deflection test, and eleven times as strong in resisting deckboard-stringer separation. The two hypotheses were fully substantiated that the pallets of improved design and the pallets assembled with improved nails would perform better than the pallets of conventional design assembled with the fluted nail commonly used in Brazil. ## RECOMMENDATIONS - 1) Since peroba and eucalyptus as well as mixed hardwoods from the Brazilian coastal rain forests are readily available in Brazil, comparative laboratory tests on improved pallets, assembled with these woods and Brazilian nails, would yield valuable information. The performance of comparative tests is recommended. - 2) The Brazilian helically threaded nails (b) could be improved considerably by providing them with a less steep thread angle and with four, instead of three, improved thread flutes in the light of past experience covering the use of threaded nails in building construction and assembly. The effectiveness of these nails could also be improved if their length and head diameters were increased. To meet the MIBANT criteria adopted in the U.S.A. for pallet nails, those to be used for the assembly of stevedore pallets will have to be hardened-steel nails. This requirement is of special importance in the light of the large size and weight of the stevedore pallets. Therefore, it is recommended that preference be given to the use of such improved nails for the assembly of stevedore pallets. - 3) It is desirable that comparative field tests on non-treated and preservatively treated stevedore pallets of improved design be conducted at the docks of Santos in the State of Sao Paulo, Brazil. A tentative outline of such field tests is presented in Table 15. - 4) To reduce the weight of the improved stevedore pallets and to save lumber, it is suggested that the use be investigated of four, instead of three, stringers combined with the appropriate corresponding reduction in deckboard thickness, as justified on the basis of the following calculations: According to previous studies, the deflection of pallets supported along their sides and loaded at their center can be determined by the following equation: $$d = ky \frac{W}{A} \frac{s^4}{h^3} \frac{1}{Eq}$$ (27, 29) If similar pallets with three and four stringers are to serve the same purpose, and are to be equally stiff, that is, deflect the same amount under load, then $$k_1 y \frac{W}{A} = \frac{s^4}{h_1^3} = \frac{1}{Eg} = k_2 y \frac{W}{A} = \frac{s^4}{h_2^3} = \frac{1}{Eg}$$ and $$k_1/h_1^3 = k_2/h_2^3$$ a) From the tables (29) presented for flush pallets assembled with hardenedsteel nails, $$k_1 = \frac{1.94}{32}$$ and $k_2 = \frac{1.25}{32}$ If $h_1 = 1.000$ ", then the deckboard thickness, $h_2 = 0.866$ ". b) From the tables (27) presented for flush pallets assembled with hardenedsteel nails, $$k_1 = 0.15225 \text{ y}^{-1} \text{ and } k_2 = 0.109375 \text{ y}^{-1}$$ If $h_1 = 1.000$ ", then the deckboard thickness, $h_2 = 0.888$ ". Consequently, a three-stringer pallet with deckboards of 1" thickness can be replaced by a four-stringer pallet with deckboards of $\frac{7}{8}$ " thickness, if the pallets are alike otherwise. In the instance of pallets of improved design with four stringers (two outer $2\frac{3}{8}$ " x 4" and two inner $1\frac{7}{8}$ " x 4" stringers) and $\frac{7}{8}$ " deckboards, the amount of lumber required is 5%, by weight and volume, less than that for pallets with three $2\frac{3}{8}$ " x 4" stringers and 1" deckboards. On the other hand, the number of nails required for the four-stringer pallets (184 or 1.5 lb.) is 33% more than that for the three-stringer pallets (138 or 1.2 lb.). Despite this, the weight of the four-stringer pallets (233 ib. when green and 149 lb. when seasoned) should be approximately 5% less than that of the three-stringer pallets (245 lb. when green and 156 lb. when seasoned). ## REFERENCES - 1. American National Standards Institute. 1977. Corner drop of vertically suspended pallet. In Procedures for Testing Pallets, Standard MH 1.4.1 4.2. American Society of Mechanical Engineers, New York, N. Y. - 3. . . . 1977. Combined deckboard, stringer, and pallet stiffness and strength test. In Procedures for Testing Pallets, Standard MH 1.4.1 8.4. American Society of Mechanical Engineers, New York, N. Y. - 4. American Society for Testing and Materials. 1976. Standard methods of testing pallets. Annual Standards, Part 20, Standard D-1185-73. ASTM, Philadelphia, Pa. - 5. . 1976. Incline impact test for shipping containers. Annual Standards, Part 20, Standard D-880-68. ASTM, Philadelphia, Pa. - 6. . . . 1976. Moisture content of wood. Annual Standards, Part 22, Standard D-2016-74. ASTM, Philadelphia, Pa. - 7. . . . 1976. Specific gravity of wood and wood base materials, Method D. Annual Standards, Part 22, Standard D-2395-69. ASTM, Philadelphia, Pa. - 8. Eichler, J. R. 1976. Wood Pallet Manufacturing Practices. 2nd edition. Eichler Associates, Cape Coral, Fla. 277pp. - 9. Heebink, T. B. 1959. Load-Carrying Capacity of Deck Boards for General-Purpose Pallets. Forest Products Laboratory. Report 2153. Madison, Wis. - Hosner, J. F., and E. G. Stern. 1977. The William H. Sardo Jr. Pallet and Container Research Laboratory and The Hardened-Steel Pallet Nail. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 148. Blacksburg, Va. 16pp. - 11. McLain, T. E., and E. G. Stern. 1978. Withdrawal Resistance of Pallet Nails and Staples in Five Western Woods. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 155. Blacksburg, Va. 11pp. - 12. National Wooden Pallet Manufacturers Association. 1962. Specification and Grades of Hardwood Warehouse, Permanent or Returnable Pallets. NWPMA, Washington, D. C. 18pp. - Stern, E. G. 1969. Up-Grading of Pallets by Assembly with Hardened-Steel Nails. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 83. Blacksburg, Va. 31pp. - 14. . . 1972. Southern Pine Pallets Assembled with Stiff-Stock and Hardened-Steel Pallet Nails. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 106. Blacksburg, Va. 12pp. - 15. . . 1972. MIBANT Test Criteria for Pallet Nails. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 115. Blacksburg, Va. 26pp. - 16. . 1973. Douglas-Fir Lumber Pallets Assembled with Stiff-Stock and Hardened-Steel Pallet Nails. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 120. Blacksburg, Va. 12pp. - 17. . 1973. Reconfirmation of MIBANT Test Criteria for Pallet Nails. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 122. Blacks-burg, Va. 9pp. - 1974. Hardened-Steel Versus Stiff-Stock Nails in Warehouse Pallets. VPT&SU Wood Research and Wood Construction Laboratory. Bulletin 125. Blacks-burg, Va. 8pp. - 19. . 1974. Recent Pallet Fastening
Research Can Reduce Pallet Costs. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 128. Blacks-burg, Va. 8pp. - 20. . 1974. Pallet Stiffness and Load-Carrying Capacity Determined According to Two Test Methods. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 131. Blacksburg, Va. 19pp. - 21. . . 1977. MIBANT Tests on Pallet Staples. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 149. Blacksburg, Va. 11pp. - 22. . . 1977. The Status of the Pallet Throughout the World. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 153. Blacksburg, Va. 19pp. - 23. . 1977. Performance of Lumber Pallets of Conventional and Improved Designs. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 154. Blacksburg, Va. 33pp. - 24. . 1978. Performance of Warehouse and Exchange Pallets Made of Six Western Woods. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 156. Blacksburg, Va. 47pp. - 25. Stern, E. G., and P. S. Dear. 1945. A Simplified Method for Determination of the Specific Gravity of Wood and Plastics. American Society for Testing and Materials. Bulletin 135:35–40. - 26. Stern, E. G., and W. B. Wallin. 1976. Eucalyptus Warehouse and Exchange Pallets. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 147. Blacksburg, Va. 30pp. - 27. Wallin, W. B. 1977. Pallet Strength Computation, A Simplified Procedure. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 151. Blacksburg, Va. 30pp. - 28. Wallin, W. B., and E. G. Stern. 1976. Comparative Performance of Southern Pine Pallets, Part II. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 142. Blacksburg, Va. 18pp. - 29. Wallin, W. B., E. G. Stern, and J. A. Johnson. 1976. Determination of Flexural Behavior of Stringer-Type Pallets and Skids. VPI&SU Wood Research and Wood Construction Laboratory. Bulletin 146. Blacksburg, Va. 34pp. - 30. Wallin, W. B., and K. R. Whitenack. 1976. Pallet Performance -- A Computer-ized Formulation for Determining Economic Life and Cost Use. Northeastern Forest Experiment Station Forest Products Marketing Laboratory. Princeton, W. Va. 19pp. FIGURES 1 - 15 Fig.1.- Stevedore pallets of conventional and improved designs, with locations of deflection sensors A, B, C, D, and E shown. Fig. 2.- From left to right, Nail (a) $2\frac{1}{2}$ " x 0.143" Brazilian helically fluted nail (No. 2017); Nail (b) $2\frac{1}{2}$ " x 0.127" Brazilian helically threaded nail (No. 2018); Nail (c) 2 9/16" x 0.119" helically threaded pallet nail (No. 1999A); Nail (d) 3" x 0.120" helically threaded pallet nail (No. 1785). ## Deckboards Note. - A) Conventional design - B) Improved design - a) $2\frac{1}{2}$ fluted nail as used in Brazil - b) $2\frac{7}{2}$ " threaded nail as used in Brazil c) $2\frac{7}{2}$ " threaded nail as used in U.S.A. d) 3" threaded nail as used in U.S.A. ## Stringers Fig.3.- Average oven-dry specific gravity of deckboards and stringers of pallets of conventional and improved designs. Fig. 4a.- Sequential tests on reversible, double-face, wing-type, two-way, three-stringer, nailed red-oak, 48" x 63", stevedore pallets: - a) Initial static stiffness as determined by computerized static load deflection test (bottom right); - b) Pallet rigidity as determined by impact free-fall cornerwise drop test (bottom left), followed by pallet weighing on platform scale (center left); - Resistance of pallet to forces exerted by forklift truck as determined by impact incline deckboard-stringer separation test (center), followed by pallet repair (center right); - d) Follow-up pallet stiffness as determined by computerized follow-up static load-deflection test (bottom right); - e) Pallet load-carrying capacity as determined by static load-deflection test (bottom right). Note: The four pallets shown in the referenced locations in the foreground are pallets of improved design. The numerous pallets in the background are experimental red-oak pallets with steel-pin reinforced stringers provided with product-retention bars and the 20 pallets in the center background are experimental red-alder pallets. Fig. 4b.- Computerized static load-deflection tester, shown in foreground, with printer (at left), plotter (in center), and test rack with five sensors (at right). Fig. 4c.- Impact free-fall cornerwise drop test on reversible, double-face, wing-type, two-way, three-stringer, nailed red-oak, stevedore pallet of improved design (held by Nilson Franco). Fig. 4d.- Impact incline deckboard-stringer separation test on loaded, reversible, double-face, wing-type, two-way, three-stringer, nailed red-oak, stevedore pallet of improved design, placed on dolly, with stationary lift-truck forks in front of oak-faced steel rack. Fig. 4e. – Failure of stevedore pallet of improved design (Bd5), assembled with 3" x 0.120" helically threaded, hardened-steel pallet nails, after 451 runs during impact incline deckboard-stringer separation test, with impacted leading-edge deckboard fully separated from two stringers. Fig. 4f.- Repair of pallet previously tested for initial static stiffness, impact rigidity, and impact resistance to forces exerted by forklift truck, when front top leading-edge deckboard was pried off stringers (renailed by James W. Akers). Fig. 4g.- Improved stevedore pallet Bb1 in test rig at ultimate test load of 13800 lb. (top and center) and after release of this load (bottom). Fig. 4h. – Failures of stevedore pallets in test rig at ultimate test loads: Top, conventional pallet Aa2 at 8800 lb., with two top deckboards separated from broken center stringer. Center, conventional pallet Ad3 at 10400 lb., with near-center top deckboard broken at knots. Bottom, improved pallet Bd5 at 12000 lb., with compression failure of front top leading edge deckboard and minor failure of inner top deckboard at knot near end. Fig 4i.- Failures of stevedore pallets in test rig at ultimate test loads: Top, conventional pallet Ac3 at 9400 lb., with near-center bottom deckboard separated from outer stringer (nail failure). Bottom, conventional pallet Ad3 at 10400 lb., with near-center top deckboard, broken at knot, separated from outer stringer (nail failure). Fig. 4j. – Failures of stevedore pallets in test rig at ultimate test loads: Top, conventional pallet Aa2 at 8800 lb., and bottom, improved pallet Bc2 at 6200 lb., with cross-grain of center stringer being the reason for early failures. Fig.5.- Average nail-withdrawal resistance, in pounds. Fig.6.- Average nail-shear resistance, in pounds. Fig.7.- Average load-deflection curves for initial stiffness tests on pallets of conventional and improved designs, with E curves off-set by 0.200 inches Fig.8.- Regression line showing relationship between weight and cumulative deflection of pallets of improved design. Fig.9.- Average deflection of pallets of conventional and improved designs, per 100 lb. of static load applied at center of pallet. Fig. 10.-A verage changes in length of diagonals, in inches, during six free-fall cornerwise drops of pallets, with curves of nails (b) and (c) off-set. Fig.11.- Grand-average changes in length of diagonals, in inches, during six free-fall cornerwise drops of pallets. Fig. 12— Average percentile distortions and cumulative average changes in length, in inches, of diagonals of pallets of conventional and improved designs up to and including 6th drop. Fig. 14. – Average and grand-average numbers of runs of pallets of conventional and improved designs. Fig.15a.- Average load-deflection curves for follow-up stiffness on pallets of conventional and improved designs, with E curves off-set by 0.200 inches. Fig. 15b.- Average load-deflection curves for follow-up stiffness of pallets of conventional and improved designs, with E curves off-set by 0,200 inches. TABLES 1 - 15 In all Tables, 100% serves as basis of comparison. TABLE 1 Production of Pallets in U.S.A. | Year | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | |---|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Pallet Units (in millions): | 87.7 | 103.8 | 104.3 | 115.0 | 133.7 | 126.3 | 138.0 | 154.7 | 185.4 | 205.1 | 159.3 | 195.7 | 235.9 | | U.S. Dollar
Volume (in
millions): | 259 | 348 | 361 | 407 | 495 | 484 | 530 | 623 | 970 | 1206 | 1018 | 1117 | 1411 | | Percentage of
National Lum-
ber Production: | 6.2 | 6.9 | 7.3 | 8.0 | 9.1 | 8,6 | 9.7 | 10.0 | 12.0 | 14.9 | 12.7 | 13 | 15 | ပ္ပ TABLE 2 Estimated Production of Pallets in Selected Countries During 1976 | Country | Millions | | | | | |----------------|----------|--|--|--|--| | Brazil | 0.5 | | | | | | France | 20 | | | | | | Italy | 7 | | | | | | Japan | 30 | | | | | | United Kingdom | 14 | | | | | | U.S.A. | 196 | | | | | | West Germany | 25 | | | | | TABLE 3 Material Requirements for Pallet Assembly | Design | İtem | Quantity | Size | Amount | |--------------|----------------------------------|---------------|---|--| | Conventional | Deckboards
Stringers
Nails | 12
3
84 | 1"x6"x63" (25x150x1600 mm)
2\frac{3}{8}"x4"x48" (60x100x1200 mm) | 43½ bdft. (94cm ³)
0.71 to 0.86 lb. | | Improved | Deckboards
Stringers
Nails | | 1"x6"x63" (25x150x1600 mm)
2\frac{3}{8}"x4"x48" (60x100x1200 mm) | | TABLE 4a Inspection Record of Conventional Red-Oak Stevedore Pallets | | | | | Te | st Weigh | t, in Lb. | | | | | | | | | | | | | | |------------------|---------------|------------------|------------------|------------------|------------------|---------------------|---------------------|-------------|---------------------|--------------|----------------|----------|---|----------------|---------------|---------------|--------------|--------------------|-------------------------| | Pallet
Nails |
Pallet
No. | Assembly Weight, | | During | During | During
FolUp St. | During
Ult. Load | | t. Cont.
Testing | | n-Dry
Grav, | Count of | | board
Split | Stri
End S | nger
inlit | Cup-
ping | Center
Stringer | Top Center
Deckboard | | | | in Lb. | Test | Test | Test | Test | Test | Dkbd. | Stringer | Dkbd, | Stringer | | | Other | | | F | Height, In. | | | 2 ½"
Nail (a) | Aa 1
Aa 2 | 220,14
220,48 | 139,50
143,50 | 138,34
141,62 | 136,98
139,89 | 136.98
139.89 | 135.06
137.95 | 9.6
9.3 | 17.4
22.5 | 0.52 | 0.68
0.66 | 84
84 | 1 | 4 | 0 | o, | 7 | 3.87 | 5.73 | | 14011 (0) | Aa3 | 218,00 | 141.00 | 138.62 | 137,45 | 137.45 | 135,47 | 9.3 | 25.2 | 0.56 | 0.62 | 84 | i | 7 | Ŏ | ó | 3 | 3.87
3.83 | 5.58
5.49 | | | Aa4 | 212.88 | 142,47 | 139,53 | 138,19 | 138,19 | 136.44 | 9.9 | 27.6 | 0.68 | 0.70 | 84 | 2 | 3 | ŏ | ĭ | 3 | 3,93 | 5.65 | | | Aa5 | 217.95 | 142.00 | 139.28 | 137.91 | 137.91 | 136,62 | 9.9 | 24,7 | 0.55 | 0.75 | 84 | 1 | 4 | 0 | 1 | 7 | 3.90 | 5.62 | | _ • | Avg. | 217.85 | 141.69 | 139,48 | 138,08 | 138,08 | 136.31 | 9.6 | 23.4 | 0.58 | 0,68 | 84 | 1 | 5 | 0 | 1 | 5 | 3.88 | 5.61 | | 21/2" | Ab1 | 215.00 | 145.38 | 143.50 | 141.98 | 141.98 | 139,89 | 9.3 | 24.7 | 0.60 | 0.69 | 84 | O | 4 | 0 | 1 | 7 | 3,94 | 5,54 | | Nail (b) | Ab2
Ab3 | 216.81 | 143.47 | 141.16 | 139.50 | 139.50 | 137.42 | 10.3 | 17.6 | 0.68 | 0.73 | 84 | 0 | 6 | 0 | 1 | 7 | 3.86 | 5,62 | | | Ab4 | 212,25
215,19 | 145,86
146,12 | 142.70
142,62 | 141,81
141,19 | 141.81
141.19 | 139.69 | 9.7 | 16.8 | 0.62 | 0.74 | 84 | 0 | 1 | 0 | 0 | / | 3.80 | 5.63 | | | Ab5 | 211.06 | 143,69 | 139.81 | 138,53 | 141.78 | 139,42
136,53 | 9.8
10.0 | 24.7
17.3 | 0.64
0.50 | 0.64
0.65 | 84
84 | ŏ | 3 | 0 | ¦ . | 5 | 3.91
3.88 | 5,58
5,60 | | | Avg. | 214.06 | 144,90 | 141.96 | 140,60 | 141,25 | 138,59 | 9.8 | 20.2 | 0.50 | 0.69 | 84 | ŏ | 4 | ŏ | i | 7 | 3,88 | 5.59 | | 2 }" | Acl | 217,81 | 143.00 | 140.59 | 138.70 | 138,70 | 136.75 | 9,8 | 22.7 | 0.50 | 0,71 | 84 | 0 | | 0 | 0 | 5 | | | | Nail (c) | Ac2 | 216,31 | 142,97 | 140.56 | 139.59 | 139.59 | 137,67 | 9.8 | 19.6 | 0.56 | 0.60 | 84 | ĭ | 6 | ŏ | Ö | 7 | 3.93
3.84 | 5.69
5.68 | | | Ac3 | 215.56 | 139,88 | 137.44 | 136.26 | 139.33 | 134,56 | 9.7 | 22.9 | 0.62 | 0.68 | 84 | ò | 4 | ŏ | ŏ | 5 | 3,83 | 5,57 | | | Ac4 | 216.50 | 143,28 | 140,03 | 139,25 | 142,31 | 137.53 | 9.6 | 22,5 | 0.58 | 0,68 | 84 | ŏ | 3 | ŏ | 2 | 5 | 3.75 | 5.64 | | | Ac5 | 219.62 | 140,86 | 138,16 | 136,75 | 141,36 | 135,81 | 10.0 | 22.5 | 0.54 | 0.70 | 84 | Ó | 4 | Ó | 1 | 8 | 3.88 | 5,57 | | | Avg. | 217.16 | 142.00 | 139,36 | 138,11 | 140.26 | 136.46 | 9,8 | 22.0 | 0.56 | 0.67 | 84 | 0 | 4 | 0 | 1 | ક | 3,85 | 5,63 | | 3" | Ad 1 | 220.69 | 148,31 | 145,86 | 143,80 | 143,80 | 142.88 | 9.7 | 21.4 | 0.59 | 0.68 | 84 | 0 | 5 | 0 | 1 | 9 | 3.87 | 5.54 | | Nail (d) | Ad2 | 220,38 | 150,88 | 148,28 | 147.06 | 147.06 | 140,28 | 9.8 | 14.8 | 0.59 | 0.78 | 84 | 0 | 3 | 1 | 2 | 7 | 3.81 | 5.56 | | | Ad3 | 215,12 | 144.06 | 142.30 | 141.06 | 141,06 | 139.44 | 9.7 | 23.7 | 0.66 | 0.64 | 84 | 0 | 5 | Q | 0 | 5 | 3.95 | 5,65 | | | Ad4 | 217.56 | 141.23 | 139.41 | 138.02 | 142.12 | 137.55 | 10.7 | 17.6 | 0.66 | 0.67 | 84 | Ŏ | 6 | ó | 1 | 5 | 3.83 | 5.65 | | | Ad5 | 216.86
218.12 | 144.76
145.85 | 142.76
143.72 | 141,95
142,38 | 147,42
144,29 | 141,25
140,28 | 9.7
9.9 | 23.6
20.8 | 0.62
0.62 | 0.66
0.69 | 84
84 | 0 | 4 | 0 | | ó | 3.94 | 5.57 | | | Avg. | | | | | | | • | - | - | | _ | - | 4 | • | 1 | 0 | 3.88 | 5.59 | | Grand | Avg. | 216,80 | 143,61 | 141,13 | 139,79 | 140.97 | 137.91 | 9,8 | 21.6 | 0,59 | 0.68 | 84 | O | 4 | 0 | 1 | 6 | 3.87 | 5.61 | TABLE4b Inspection Record of Improved Red-Oak Stevedore Pallets | Pallet
Nails | Pallet
Nos. | Assembly
Weight,
in Lb. | | During | | t, in Lb.
During
Incline
Test | During
FolUp St.
Test | During
Ult, Load
Test | After | . Cont.
Testing
Stringer | Sp. (| n-Dry
Grav,
Stringer | Count
of
Noils | Deckt
End S
Nails | iplit | | nger
Split
Other | Cup-
ping | Stringer
Height, In. | | |------------------------------|---|--|---|--|--|--|--|--|--|--|--|--|--|----------------------------|---------------------------------|-----------------------|------------------------|------------------------------|--|--| | 2 }"
Nail (a) | Bal
Ba2
Ba3
Ba4
Ba5
Avg. | 251,25
252,52
248,86
249,00
248,81
250,09 | 167.00
166.38
167.17
163.20
164.67
165.68 | 166,45
165,83
166,62
162,65
164,12
165,13 | 164,34
163,88
163,03
158,69
161,26
162,24 | 161,48
160,50
160,12
155,86
159,61
159,51 | 161,48
160,50
160,12
161,44
159,61
160,63 | 158.81
158.75
158.58
156.19
158.62
158.19 | 10.0
10.7
9.9
9.7
9.5
10.0 | 26.6
27.3
18.6
12.9
20.8
21.2 | 0.52
0.61
0.62
0.47
0.56
0.56 | 0,68
0,75
0,76
0,67
0,77
0,73 | 138
138
138
138
138
138 | 1
0
0
3
4
2 | 6
7
6
5
2
5 | 0 1 0 3 1 | 0
0
0
2
0 | 6
5
4
6
5 | 3,93
3,82
3,85
3,92
3,85
3,87 | 5,61
5,65
5,63
5,67
5,62
5,64 | | 2 ½"
Nail (b) | 8b1
8b2
8b3
8b4
8b5
Avg. | 241,00
246,00
244,75
246,12
242,00
243,97 | 162.25
171.66
166.55
161.22
161.55
164.65 | 161.70
171.11
166.00
160.67
161.00
164.10 | 159,12
167,81
161,33
158,33
158,59
161,04 | 157.20
162.53
158.16
156.48
156.92
158.26 | 157.20
168.31
158.16
156.48
156.92
159.41 | 154.66
161.72
157.00
155.72
156.06
157.03 | 10.4
10.4
11.1
10.4
10.4
10.5 | 23.8
20.6
24.8
17.8
19.3
21.3 | 0.64
0.61
0.57
0.62
0.55
0.60 | 0.68
0.68
0.68
0.78
0.78
0.72 | 138
138
138
138
138
138 | 2
1
0
0
0 | 3
5
7
1
3
4 | 0 0 0 0 | 1
0
0
1
1 | 7
9
3
8
3
6 | 3,91
3,87
3,91
3,88
3,89
3,89 | 5.66
5.64
5.63
5.58
5.56
5.61 | | 2] "
Nail (c) | Bc1
Bc2
Bc3
Bc4
Bc5
Avg. | 245.44
247.56
245.56
233.25
244.75
243.31 | 161, 19
166, 38
162, 25
157,00
156, 75
160, 71 | 160.64
165.83
161.70
156.45
156.20
160.16 | 158,59
162,50
158,26
154,92
154,64
157,78 | 156,44
160,00
156,95
153,25
152,47
155,82 | 156,44
160,00
156,95
153,25
152,47
155,82 | 153,88
158,83
156,14
152,62
151,91
154,68 | 9.9
10.7
10.2
10.2
10.1
10.2 | 18.6
18.6
28.9
23.8
20.3
22.0 | 0.64
0.58
0.54
0.60
0.62
0.60 | 0,76
0,81
0,67
0,74
0,73
0,74 | 138
138
138
138
138
138 | 0
0
4
1
1 | 6
4
5
2
3
4 | 0
0
0
0 | 3
1
0
0
0 | 9
11
9
6
11
9 | 3,86
3,88
3,91
3,80
3,90
3,87 | 5,62
5,73
5,59
5,64
5,62
5,66 | | Nail (d) | Bd1
Bd2
Bd3
Bd4
Bd5
Avg. | 238,30
244,31
245,61
249,50
240,75
243,69 | 155,69
155,66
155,52
163,55
157,61
157,61 | 155,14
154,19
155,11
162,89
156,97
156,86 | 153,56
153,78
154,44
162,25
156,52
156,11 | 152.67
152.39
152.26
159.50
154.06
154.18 | 152.67
152.39
160.97
159.50
154.06
155.92 | 150,47
151,34
154,58
158,94
153,84
153,83 | 10.1
10.5
9.6
11.2
10.7
10.4 | 18.7
17.7
16.7
24.7
25.9
20.7 | 0.58
0.56
0.56
0.63
0.62
0.59 | 0.65
0.70
0.67
0.67
0.70
0.68 | 138
138
138
138
138
138 | 1
0
4
3
0
2 | 4
0
2
2
2
2
2 | 0
1
0
0
0 | 0
0
2
1
0 | 10
6
12
9
8
9 | 3.88
3.95
3.91
3.91
3.97
3.92 | 5,57
5,59
5,65
5,75
5,82
5,68 | | Grand | Avy. | 245,27 | 162,16 | 161,56 | 159,29 | 156,94 | 157,95 | 155,93 | 10.3 | 21.3 | 0.59 | 0.72 | 138 | 2 | 4 | 0 | 1 | 7 | 3.89 | 5.64 | Average Assembly and Test Weights, in Pands, of Pallets of Conventional and Improved Designs | Pallet | Assem | ıbly | | Test Weights* During | | | | | | | | | | |-----------------------|-------|------------------|-----------------------|----------------------|-----------------|------------------|------------------------|---|----------------------|---|-------------------|---|--| | Design | Weig | hts | In, Stiffness
Test | | ss Drop Test Ir | | Prop Test Incline Test | | FolUp
Stiff. Test | | Ult. Load
Test | | | | | Avg. | \boldsymbol{s} | Avg. | s | Avg. | \boldsymbol{s} | Avg. | s | Avg. | s | Avg. | s | | | Conventional Improved | | | | | | | | | | | | | | | Difference | +13% | | +12% | | + 13% | | +12% | | +12% | | +13% | | | TABLE 5 ^{*}Prior to testing the pallets of improved design, both wings of the top center deckboards were cut off to facilitate installation of the deflection sensors. This reduced the pallet weights, on the average, 0.60 lb. ### TABLE
6 Statistical Design Used for Quintuplicate Pallets of Conventional and Improved Designs Assembled with Four Different Nails | Source of Variation | Degrees of Freedom | |--------------------------------|--------------------| | Designs (2-1) | | | Nails (4-1) | 3 | | Interaction $(2-1)\times(4-1)$ | 3 | | Error (40-7-1) | 32 | | Total | 39 | TABLE 7 Static Deckboard-Stringer Separation Resistance in Direction of Nail Axis and Shear Resistance est Property $2^{\frac{1}{2}"}$ Fluted Nail (a) $2^{\frac{1}{2}"}$ Threaded Nail (b) $2^{\frac{1}{2}"}$ Threaded Nail (c) 3" Threaded Nail (d) | lest Property | 25 Fluted Nail (a) 2 | ž" inreaded Naii (b) Zž" | Inreaded Nail (c) | 3" Threaded Natl (d) | |---|----------------------|--------------------------|-------------------|----------------------| | Withdr. Resistance, in Pounds Withdr. Res., in Pounds/Inch of | 486 (<u>100%)</u> | 702 (144%) | 783 (161%) | 1027 (211%) | | Shank Penetration into Stringer | 324 (<u>100%)</u> | 468 (144%) | 522 (161%) | 514 (159%) | | Shear Resistance, in Pounds | 727 (100%) | 927 (126%) | 980 (135%) | 1239 (170%) | > TABLE 8 Evaluation of Initial Static Stiffness of Pallets | Pallet
Design | Pallet
Nos. | Avg. Pallet
Test Weight, | _ | ction Value, | Sum
(ABCDE), | | | |--|--|--------------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|-----------------------------| | | | in Lb. | Sides
(AB) | Ends
(CD) | Center
(E) | Sum
(ABCDE) | in Percent | | Conventional | Aal to 5
Abl to 5
Acl to 5
Adl to 5 | 141.69
144.90
142.00
145.85 | 1560
1482
1382
1436 | 7041
6779
6955
6958 | 8153
7602
7855
7885 | 16754
15863
16192
16279 | 103%
97%
100%
100% | | | Grand Avg. | 143.61 | 1465 | 6933 | 7874 | 16272 | 100% | | Improved | Bal to 5
Bbl to 5
Bcl to 5
Bdl to 5 | 165.13
164.10
160.16
156.86 | 1352
1281
1492
1670 | 5684
5604
6064
6650 | 6506
6346
6910
7449 | 13542
13431
14466
15769 | 95%
93%
102%
111% | | | Grand Avg. | 161.56 | 1449 | 6001 | 6802 | 14252 | 100% | | Difference | | +12% | -1% | -13% | -14% | -12% | | | Improved
with
Adjusted
Values | Bal to 5
Bbl to 5
Bcl to 5
Bdl to 5 | 165.13
164.10
160.16
156.86 | 1352
1281
1438
1517 | 5684
5604
5846
6046 | 6506
6346
6660
6770 | 13542
13231
13944
14330 | 98%
96%
101%
104% | | | Grand Avg. | 161.56 | 1397 | 5794 | 6571 | 13762 | 100% | | Difference* | | +12% | -5% | -16% | -17% | -15% | | ^{*}Adjusted values for improved pallets versus values for conventional pallets. TABLE 9 Average Deflections, in 1/1000 Inches, of All Pallets of Conventional and Improved Designs Tested, per 100 Lb. of Static Load Applied at Pallet Center, According to Deflections Observed Up to Test Load of 2000 Lb. | Pallet
Design | Sides
(AB) | | Enc
(CD | | Center
(E) | | | |------------------|---------------|------|------------|------|---------------|------|--| | J | Range | Avg. | Range | Avg. | Range | Avg. | | | Conventional | 6 - 7 | 7 | 30-32 | 31 | 34-35 | 35 | | | Improved | 6-8 | 7 | 25-31 | 27 | 28-34 | 31 | | TABLE 10 Evaluation of Pallet Rigidity Data | Pallet
Design | Pallet
Nos. | Pallet Weight
in Lb. | Avg. Percentile
Distortion of Diagonals
After 6th Drop | Avg. Cumulative Length
Change, in In., of Diagonals
Up to and Including
6th Drop | |------------------|--|---|--|--| | Conventional | Ac1 to 5 | سوي ۽ مجار الوخان ان | 9.23 <u>100%</u> <u>100%</u>
7.81 <u>85%</u> <u>85%</u>
4.49 49% 49%
4.78 52% 52% | 26.83 <u>100%</u> <u>100%</u>
24.58 <u>92%</u> <u>92%</u>
14.44 <u>54%</u> <u>54%</u>
15.53 <u>58%</u> <u>58%</u> | | Improved | Ba1 to 5
Bb1 to 5
Bc1 to 5
Bd1 to 5 | 162.24 <u>100%</u>
161.04 <u>99%</u>
157.78 <u>97%</u>
156.11 <u>96%</u> | 7.80 <u>100%</u> 85%
6.55 <u>84%</u> 71%
3.27 42% 35%
3.65 47% 40% | 22.63 <u>100%</u> 84%
20.44 90% 76%
10.73 48% 40%
12.10 53% 45% | ਹ TABLE 11 Evaluation of Impact Incline Pallet Deckboard-Stringer Separation Data Pallet Pallet Avg. Pallet Range of Numbers Average Numbers of | | • | | | | |------------------|----------------|---------------------------------------|---|--| | Pallet
Design | Pallet
Nos. | Avg. Pallet
Test Weight,
in Lb. | Range of Numbers
of Runs Prior to
End of Test | Average Numbers of
Runs Prior to
End of Test | | Conventional | Aa1 to 5 | 138.08 | 4 to 9 | 7 | | | Ab1 to 5 | 140.60 | 9 to 38 | 21 | | | Ac1 to 5 | 138.11 | 5 to 60 | 18 | | | Ad1 to 5 | 142.38 | 10 to 137 | 74 | | Improved | Bal to 5 | 159.51 | 62 to 312 | 160 | | | Bbl to 5 | 158.26 | 220 to 552 | 365 | | | Bcl to 5 | 155.82 | 221 to 406 | 302 | | | Bdl to 5 | 154.18 | 319 to 598 | 462 | TABLE 12 Evaluation of Follow-Up Static Stiffness of Pallets | Pallet
Design | Pallet
Nos. | Avg. Pallet
Weight, | Avg. Cumulative Deflection Value from 0 to 2000 Lb., in 1/1000 In. Sum | | | | | | Avg. Cumulative Deflection Value from 0 to 6000 Lb., in 1/1000 In. Sum | | | | | |------------------|--|--------------------------------------|--|------------------------------|------------------------------|----------------------------------|----------------------------|----------------------------------|--|----------------------------------|--------------------------------------|----------------------------|--| | | | in Lb. | Sides
(AB) | | Center
(E) | Sum
(ABCDE) | (ABCDE),
in Pct. | Sides
(AB) | Ends
(CD) | Center
(E) | Sum
(ABCDE) | (ABCDE),
in Pct. | | | Conventional | Aal to 5
Abl to 5
Acl to 5
Adl to 5 | 138,08
141,25
140,26
144,29 | 1522
1359
1266
1404 | 7470
7434
7328
7822 | 8707
8271
8314
8941 | 17699
17064
16908
18167 | 101%
98%
97%
104% | 11221
10277
9572
10382 | 60441
60824
59025
60434 | 72495
68893
67666
73549 | 144157
139994
136263
144365 | 102%
99%
97%
102% | | | | Grand Avg, | 140.97 | 1388 | 7514 | 8558 | 17460 | 100% | 10363 | 60181 | 70651 | 141195 | 100% | | | Improved | Bal to 5
Bbl to 5
Bcl to 5
Bdl to 5 | 160.63
159.41
155.82
155.92 | 1334
1438
1451
1664 | 5826
6024
5982
6762 | 6715
6997
6850
7513 | 13875
14459
14283
15939 | 95%
99%
98%
109% | 10595
11100
11728
13001 | 47851
48385
48564
54425 | 55164
55858
56194
61034 | 113610
115343
116486
128460 | 96%
97%
98%
108% | | | | Grand Avg, | 157.95 | 1472 | 6148 | 7019 | 14639 | 100% | 11606 | 49806 | 57063 | 1 18475 | 100% | | | Difference | | +12% | +6% | -18% | -18% | -16% | | + 12% | -1 <i>7</i> % | -19% | -16% | | | TABLE 13 Comparison of Initial and Follow-Up Pallet Stiffness Data | Pallet
Design | Pallet
Nos. | | | umulative De
-Up Stiffnes
Center
(E) | eflection Value,
s Test
Sum
(ABCDE) | |------------------|--|------------------------------|------------------------------|---|--| | Conventional | Aal to 5
Abl to 5
Acl to 5
Adl to 5 | - 2%
- 8%
- 8%
- 2% | + 6%
+10%
+ 5%
+12% | + 7%
+ 9%
+ 6%
+13% | + 6%
+ 8%
+ 4%
+12% | | | Grand Avg. | - 5% | + 8% | + 9 % | + 7% | | Improved | Bal to 5
Bbl to 5
Bcl to 5
Bdl to 5 | - 1%
+12%
- 3%
- 0% | + 2%
+ 7%
- 1%
+ 2% | + 3%
+10%
- 1%
+ 1% | + 2%
+ 8%
- 1%
+ 1% | | | Grand Avg. | + 2% | + 2% | + 3% | + 3 % | TABLE 14 Average Ultimate Pallet Test Loads | Pallet
Design | Pallet
Nos. | Avg. Pallet
Test Weight,
in Lb. | | Avg. Ult. Test Load,
in Lb., with Pallets
with Stringer Failures Omitted | |------------------|--|---------------------------------------|----------------------------------|--| | Conventional | Aal to 5
Abl to 5
Acl to 5
Adl to 5 | 136.31
138.59
136.46
140.28 | 8480
10120
9980
8920 | 8800
10120
9980
9650 | | | Grand Avg. | 137.91 | 9375 | 9638 | | Improved | Bal to 5
Bbl to 5
Bcl to 5
Bdl to 5 | 158,19
157.03
154.68
153.83 | 11360
11640
10680
11600 | 11360
11640
11800
11600 | | | Grand Avg. | 155.93 | 11320 | 11600 | | Difference | | +13% | +21% | +20% | TABLE 15 Tentative Outline of Proposed Field Tests on Stevedore Pallets of Improved Design A) All three-stringer pallets of improved design, same size and type, and same construction, with best deckboards used for backing-up deckboards and with best edge of leading-edge deckboard used for outer edge | Pallet
Sign
(1) | Wood
Species
(2) | Nail
Type
(3) | Nail
Steel
(4) | Number of Nails
per End–Deckbd, Joint
(5) | Nail
Treatment 1
(6) | Pallet
Treatment
(7) |
-----------------------|------------------------|---------------------|----------------------|---|----------------------------|----------------------------| | A(1-100) | Peroba | (a) | | 4 | none | none | | В | 11 | (b) | SS | 4 | none | none | | С | 11 | (b) | HS | 4 | none | none | | D | II | (b) | HS | 4 | galvanized | dipped | | Ε | Eucalyptus | (a) | | 4 | none | none | | F | n' ` | (b) | SS | 4 | none | none | | G | 11 | (b) | HS | 4 | none | none | | Н | 11 | (b) | HS | 6 | none | none | | 1 | 11 | (þ) | HS | 6 | galvanized | dipped | $9 \times 100 = 900$ pailets (400 peroba and 500 eucalyptus) B) All pallets identical to those above, yet with four, instead of three, stringers, with the inner 2×4 (50 \times 100 mm) stringers spaced 12" (300 mm) on centers | Pallet
Sign
(1) | Wood
Species
(2) | | | Number of Nails
per End-Deckbd. Joint
(5) | Nail
Treatment
(6) | Pallet
Treatment
(7) | |-----------------------|------------------------|-----|----|---|--------------------------|----------------------------| | A(1-100) | Peroba | (b) | HS | 4 | none | none | | В | Eucalyptus | (b) | HS | 4 | none | none | $2 \times 100 = 200$ pailets (100 peroba and 100 eucalyptus) SS = Stiff-Stock HS = Hardened-Steel ### APPENDIX TABLES 16 - 32 ### LIST OF APPENDIX TABLES | Table | | |------------------|---| | 16a to d | MIBANT data sheets for nails (a), (b), (c), and (d) | | 17a & b | Six-week delayed deckboard-stringer separation and shear resistance of red-oak pallet joints | | 18a & b | Detailed load-deflection data for pallets of conventional and improved designs | | 19 | Average load-deflection values | | 20 | Summary of linear regression analysis for parameters of $D = A + BW$ for pallets of improved design | | 21 | Two-factorial analysis of variance of initial stiffness test data for pallets of two designs, assembled with four different nails | | 22a to h | Detailed test data for free-fall drop tests on pallets of conventional and improved designs | | 23 | Average data for free-fall drop tests of pallets of conventional and improved designs | | 24 | Two-factorial analysis of variance of free-fall drop test data for pallets of two designs, assembled with four different nails, and Duncan's multiple range test on average cumulative length changes of diagonals after 6th drop | | 25 | Detailed deckboard-stringer separation data for pallets of conventional design | | 26 | Detailed deckboard-stringer separation data for pallets of improved design | | 27 | Two-factorial analysis of variance of incline impact test data for pallets of two designs, assembled with four different nails, and Duncan's multiple range test on the average numbers of runs during incline impact test | | 28a to h | Detailed follow-up load-deflection data for pallets of conventional and improved designs | | 29 a to d | Average follow-up load deflection values for pallets of conventional and improved designs | | 30 | Two-factorial analysis of variance of follow-up stiffness test data for pallets of two designs, assembled with four different nails | | 31 | Detailed load-carrying capacity data | | 32 | Two-factorial analysis of variance for ultimate static load test data for pallets of two designs, assembled with four different nails | APPENDIX TABLE ICH ### MIBANT DATA SHEET FOR PALLET NAILS (use separate form for each lot of 25 nails) APPENDIX TABLE 160 Avg.: 37 Total: 0 Total: 0 MIBANT DATA SHEET FOR PALLET NAILS (use separate form for each lot of 25 nails) | | | | (use se | parate form fo | or eac | h lot c | # 25 n | ails) | | | | | |-----|--------------|-------------------|------------|--|-----------|----------------|-----------|-----------|-------------|-----------|--------------------------------------|---------------| | 1) | Nails
LTD | A. Ruc | Riachuelo | te address): .'
, 201, 6 and
so Paulo – Br | lor, | coujňú | 10 A. | | | | by pallet
lurer sub- | -
<u>2</u> | | 2) | | • | • | urer, type, la
atalogue No. | - | | | | | | be filled out by
rail manufacture | Š.
Š | | 3) | Field | Experience | with Nail: | s: | • • • • | | | | | •••• | E E | Ē | | | • • • • • | • • • • • • • • • | | ••••• | | | • • • • • | • • • • • | • • • • • | •••• | to be | | | | | | | | | | | | | | 130 | _ | | | | | | 9. 19 . 1977 | | | 6) VI | PI Na | il No.4 | WUM. | | | | | | | | ameter): 21." | | | _ | | _ | | | | | | | | | eel Stiff- | | | | | • | | | | | | | | | rly Threaded | | | • | | | | | | | | | | | .4?." 11) Thr | | | | | | | | | | 13) | Appe | arance:! | rointless | • | • • • • • | ••••• | • • • • • | • • • • • | ••••• | ••••• | • • • • • • | • • • • • | | 14) | MIBA | NT TEST D | ATA: | Date of Test: | Pes.2 | Q. <i>77</i> . | Mac | hine (| Operate | or: Niji | iou Etai | 769 | | | Test | Angle | Portial | Complete | | Note | ond I | Remark | k s: | | | • • • • • | | | No. | in Degr. | Foilure | Failure | | | | | | | | | | | 1 2 | 36
37 | | | | | | | | · . • • • | | | | | 3 | 38 | | | | | | | | | • • • • • • | | | | 4
5 | 36
41 | | | | | | | | | | | | | 6 | 38 | | | | 20 _ | | Fraq | uency ! | Distribu | otion | | | | 7 | 38
36 | | | | ţ | | | | | | | | | 9 | 35 | | | | 15 | | | | <u> </u> | (
 | | | | 10
11 | 37
36 | | | } | ., | | | | | | 1 1 | | | 12 | 39 | | | ş | , L | | | | <u></u> | | L | | | 13
14 | 37
38 | | | Frequency | 10 | | | | | i | 1 | | | 15 | 35 | | | u. | Ŀ | | | L | اسل | | \perp | | | 16
17 | 37
40 | | | | 5 | [| | 1 | 1 1 | L) | | | | 18 | 37 | | | | ا ه | | | 1 | | | | | | 19
20 | 36
39 | | | | ٥ ر | 1 | 0 | 20 | 30 | 40 5 | 50 60 | | | 21 | 39 | | | | | | Beno | i Angle | , in D | egrees | | | | 22 | 37
36 | | | | | | | | | | | | | 23
24 | 30
37 | | | | | | | | | | | | | 25 | 41 | | | | | | | | | | | Wood Research & Wood Construction Laboratory Virginia Palytechnic Institute & State University Blacksburg, Virginia 24061 E. George Stern Virginio Polytechnic Institute & State University Blacksburg, Virginia 24061 E. George Stern | MIBANT | DATA | SHEET | FOR | PA | LLET | NAILS | |-----------|---------|---------|------|-----|------|----------| | (use sepa | arate i | arm for | each | lot | of 2 | 5 noils) | APPENDIX TABLE ICC 1) Nails Submitted by (complete address): Philstone Nail Corporation Canton, Massachusetts 3) Field Experience with Nails: 4) Date of Submission: 5) Date of Receipt at VPI: October 4, 1977 6) VPI Nail No. 1999A 7) Nail Size (length x wire diameter):2.9/16x 0. 1194 8) Nail Type: Low-Carbon-Steel ... Stiff-Stock ... Hardened .X. Tempered ... 9) Shank Deformation: Annularly Threaded ... Helically Threaded ... Twisted ... 10) Thread-Crest Diameter: 0.138." 11) Thread Angle: 59° 12) Number of Flutes: 4...... 14) MIBANT TEST DATA: Date of Test: . 19/5/77.. Machine Operator: Kenneth Albert... Notes and Remarks: Angla Partial Complete Test No. in Degr. Failure failure 15 17 15 16 16 Frequency Distribution 18 20 17 16 16 15 10 17 18 11 12 15 17 13 14 19 17 16 17 18 17 18 19 17 17 20 21 Bend Angle, in Degrees 17 17 19 17 18 Wood Research & Wood Construction Laboratory 17 Total: 0 Total: 1 Avg.: Virginia Polytechnic Institute & State University Blacksburg, Virginia 24061 E. George Stern MIBANT DATA SHEET FOR PALLET NAILS (use separate form for each lot of 25 nails) APPENDIX TABLE 16d #### APPENDIX TABLE 17a Six-Week Delayed Deckboard-Stringer Separation Resistance of Red-Oak Pallet Joints Nails driven through 1.00"-thick deckboards of 99.8% moisture content and 0.64 oven-dry specific gravity into 2.40"-wide stringers of 70.0% moisture content and 0.67 oven-dry specific gravity. Nails pulled through deckboard of 9.4% moisture content and/or withdrawn from stringer of 29.8% moisture content. | Oak
St ick | Repli-
cation | | | 2½" Nail (c)
(1999a) | 3" Nail (d)
(1785) | | | |----------------------|---|--|---|--|--|--|--| | | | (b) | (b) | (b) | (a) (b) (c) | | | | A A B C C D E E F (| 1
2
3
4
5
6
7
8
9 | 433
567
434
498
478
468
560
440 | 680
715
775
733
733
665
735
600
648 | 752
838
772d
830
918
728
695d
680d
835 | 975
1200
1100-1120-812
1065-898
1095
905- 968-978
888d
872d
950- 955-890 | | | | G | 10 | 465 | 738 | 785 | 890-1130- <i>690</i> | | | | | Avg.
Avg.
Coefficient | 486
100% | 702
144% | 783
161% | 1027 ⁹²²
211% ^{190%} | | | | | of Variation | 10,1% | 7.5% | 9.4% | 10.8% 15.4% | | | ⁽a) Head pull-through resistance. (b) Shank withdrawal resistance. ⁽c) Head failure. (d) Stringer split at nail location. ### Six-Week Delayed Deckboard-Stringer Shear Resistance of Red-Oak Pallet Joints Nails driven through 1.02"-thick deckboards of 74.3% moisture content and 0.70 oven-dry specific gravity into 2.40"-wide stringers of 63.8% moisture content and 0.72 oven-dry specific gravity. Nails sheared or pulled through deckboards of 10.6% moisture content and/or withdrawn from stringers of 31.3% moisture content. | Oak | Repli- | 2½" Nail (a) | 2½" Nail (b) (2018) | 2½" Nail (c) | 3" Nail (d) | |--------|----------------------------|--------------|---------------------|---------------|----------------| |
Stick | cation | (2017) | | (1999a) | (1785) | | A | 1 | 718c | 989c | 1005c | 1328b | | B | 2 | 812c | 1025c | 1070c | 1335b | | B | 3 | 780c | 970c | 1100c | 1415d | | C | 4 | 703c | 965c | 988c | 1288c | | D | 5 | 752c | 882c | 895c | 1028c | | D | 6 | 690c | 833c | 895c | 1075b | | Ē | 7 | 670ce | 935c | 938ce | 1195b | | F | 8 | 745c | 915c | 1058c | 1125b | | F
G | 9
10 | 690c
712c | 945c
905c | 832a
1022b | 1262c
1335b | | | Avg.
Avg.
Coefficien | 727
100% | 927
128% | 980
135% | 1239
170% | | | of Variation | | 5.8% | 8.9% | 10.3% | ⁽a) Nail shank sheared. 86 ⁽b) Nail pulled through deckboard. ⁽c) Nail withdrawn from stringer. ⁽d) Nail head failure. ⁽e) Stringer split at nail location. APPENDIX TABLE 18a Detailed Load-Deflection Data, in Lb. and 1/1900 (n. Pallets of Conventional Design | Test
Load | Pallet No. Aa?
A B C D E | Pallet No. Aa2
A B C D E | Pallet No. Aa3
A B C D E | Pallet No. Ap4 A B C D E | Pallet No. Aa5
A B C D E | |--|--|---|--|--|--| | 0 | 000 000 000 000 000 | 000 000 000 000 000 | 000 000 000 000 000 | 000 000 000 000 000 | 000 000 000 000 000 | | 200 | 10 15 63 71
72 | 13 16 60 54 66
14 18 65 60 73 | 10 11 57 54 63
12 13 63 61 70 | 15 G6 63 63 68
16 C7 68 68 74 | 16 12 71 57 71
16 13 76 60 76 | | 400 | 27 32 136 145 153 | 30 33 123 120 142
34 37 135 131 157 | 27 25 121 118 137
29 28 131 129 149 | 32 12 130 129 142
35 13 142 142 156 | 32 25 138 117 141
35 28 149 128 153 | | 600 | 40 48 202 212 230 | 46 50 186 186 223
49 53 197 197 237 | 41 39 184 186 213
45 41 195 198 227 | 49 19 202 198 222
52 21 214 210 236 | 50 39 203 181 216
52 43 213 192 228 | | 800 | 55 67 265 278 306 | 63 65 244 249 301
65 67 255 260 315 | 57 52 246 253 289
60 54 259 266 304 | 65 27 273 262 299
68 30 287 279 315 | 65 53 265 239 286
68 57 276 251 300 | | 1000 | /0 63 33! 342 380 | 79 78 301 310 375
82 81 313 322 390 | 75 64 311 322 367
78 67 323 335 382 | 79 37 344 328 374
82 40 358 343 389 | 82 66 328 278 355
84 69 340 310 369 | | 1200 | 82 101 390 394 438
84 106 395 407 455 | 93 92 359 371 450
95 95 371 383 466 | 90 76 372 388 443
94 80 386 402 460 | 92 47 411 394 448
95 51 424 410 464 | 98 76 387 350 418
102 80 401 363 433 | | 1400 | 96 114 443 457 510
100 119 460 471 528 | 106 106 416 433 524
109 109 428 446 540 | 106 89 432 457 520
109 92 446 471 536 | 106 57 473 457 519
109 62 487 473 534 | 114 87 447 405 484
117 90 460 420 499 | | 1600 | 112 126 508 515 585
115 131 528 531 605 | 120 119 472 494 600
123 123 486 507 618 | 122 101 490 522 595
125 105 505 536 611 | 118 68 534 517 589
121 73 547 533 607 | 129 97 502 462 548
133 101 515 477 566 | | 1800 | 126 139 574 575 660
131 144 596 591 682 | 133 133 527 551 675
136 136 542 564 694 | 136 113 549 584 666
141 117 564 599 684 | 131 79 591 579 660
134 85 607 599 680 | 146 107 558 518 617
150 112 572 536 636 | | 2000 | 144 150 441 425 724 | 146 144 581 607 747
150 146 596 619 766 | 151 125 606 642 735
156 130 624 656 753 | 144 91 648 643 730
147 95 661 663 748 | 160 119 611 577 683
164 123 626 596 702 | | Test | Pallet No. Abi | Paliet No. Ab2 | Pallet No. Ab3 | Pailet No. Ab4 | Pallet No. Ab5 | | Load | | A 8 C D E | A B C D E | A B C D E | A 8 C D E | | 200 | 19 14 67 46 46 | 09 10 60 62 66
10 12 64 66 71 | 12 10 58 59 65
14 13 64 65 72 | 09 00 30 00 00
21 10 60 42 43 | 13 08 63 58 65
14 08 67 63 69 | | 400 | 27 27 111 120 120 | 25 23 122 127 138
27 26 132 138 150 | 28 25 126 131 142
31 28 137 143 154 | 37 21 115 103 109
40 24 127 115 122 | 30 16 126 124 136
32 17 135 134 147 | | 600 | 44 42 148 198 201 | 39 35 184 193 214
41 39 196 205 227 | 43 42 195 206 224
46 45 206 218 237 | 53 34 175 172 182
55 36 186 185 194 | 45 25 186 189 207
47 27 194 200 218 | | 800 | 45 57 222 247 271 | 52 48 243 259 286
54 52 254 272 301 | 57 57 260 279 300
60 61 272 292 315 | 66 45 231 235 249
69 46 242 248 262 | 57 35 237 248 272
59 38 246 258 283 | | 1000 | 94 71 274 224 242 | 66 61 303 324 357
68 65 315 339 372 | 69 73 325 347 375
71 77 339 362 391 | 81 56 287 298 320
84 57 299 311 334 | 68 46 286 304 334
70 48 295 314 344 | | 1200 | 104 84 324 405 410 | 80 73 361 391 427
82 76 373 406 442 | 80 89 391 418 449
83 93 404 433 464 | 95 65 343 360 386
99 67 356 373 400 | 79 56 334 355 392
81 58 344 366 404 | | 1400 | 123 100 378 474 479
132 103 392 492 496 | 91 84 417 454 495
93 87 429 468 509 | 91 101 451 484 519
94 106 463 497 533 | 110 76 402 426 456
114 77 416 440 471 | 89 66 381 407 449
91 68 391 418 461 | | 1600 | 143 112 429 539 545
151 117 444 558 564 | 107 94 472 514 564
109 98 484 530 590 | 102 114 508 544 587
104 118 521 558 603 | 124 84 457 488 521
128 85 473 503 538 | 100 75 428 457 507
102 77 437 467 519 | | 1800 | 161 125 481 602 613
169 131 495 620 633 | 117 103 523 573 630
121 106 534 590 646 | 112 126 564 602 654
114 130 577 618 670 | 138 92 512 546 588
142 94 528 561 605 | 110 84 473 504 564
112 87 482 513 575 | | 2000 | 180 139 531 662 679
186 144 544 679 698 | 135 112 575 635 696
139 114 585 652 711 | 121 139 615 662 718
123 142 628 678 734 | 151 100 566 600 652
156 101 580 613 667 | 120 93 517 549 619
123 95 527 559 632 | | | 100 144 544 07 070 | 137 114 363 652 711 | | | | | Test | Pallet No. Aci | Pailet No. Ac2 | Pallet No. Ac3 | Pailet No. Ac4 | Pallet No. Ac5 | | Load | A B C D E | A B C D E | A B C D E | A B C D E | A B C D E | | | A B C D E
000 000 000 000 000
12 08 60 54 63 | A B C D E
000 000 000 000 000
09 10 67 54 67 | A 8 C D E 000 000 000 000 000 05 i5 67 66 79 | A B C D E 000 000 000 000 000 11 14 73 57 69 | A B C D E
000 000 000 000 000
08 12 62 49 61 | | Load
0 | A B C D E 000 000 000 000 000 12 08 60 54 63 13 08 65 59 69 27 16 121 117 133 | A B C D E 000 000 000 000 000 09 10 67 54 67 10 10 71 58 71 20 19 131 112 136 | A 8 C D E 000 000 000 000 000 05 15 67 66 70 07 17 71 70 74 15 30 133 129 142 | A B C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 | A 8 C D E 000 000 000 000 000 08 12 62 49 61 08 13 65 52 65 16 24 122 101 123 | | Load
0
200 | A 8 C D E
000 000 000 000 000
12 08 60 54 63
13 08 65 59 69
27 16 121 117 133
30 18 132 126 148
44 25 186 184 208 | A B C D E 000 000 000 000 000 000 09 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 | A 8 C D E 000 000 000 000 000 05 15 67 66 70 07 17 71 70 74 15 30 133 129 142 17 33 144 140 153 24 47 202 197 219 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 90 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 | A 8 C D E
000 000 000 000 000
08 12 62 49 61
08 13 65 52 65
16 24 122 101 123
18 27 131 109 133
27 35 181 153 187 | | 0
200
400 | A 8 C D E 000 000 000 000 000 12 08 60 54 63 13 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 | A B C D E 000 000 000 000 000 000 09 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 | A 8 C D E 000 000 000 000 000 05 15 67 66 70 77 77 70 74 15 30 133 129 142 17 33 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 90 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 222 193 232 54 60 287 242 292 | A 8 C D E 000 000 000 000 000 08 12 62 49 61 08 13 65 52 65 16 24 122 101 123 18 27 131 109 133 27 35 181 153 187 27 38 191 161 197 35 47 236 205 249 | | 0
200
400
600 | A 8 C D E 000 000 000 000 000 12 08 60 54 63 13 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 288 257 294 64 307 313 353 | A B C D E 000 000 000 000 000 009 10 67 54 67 10 10 71 58 71 20 19 131 112 134 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 51 279 246 298 58 60 331 295 358 | A 8 C D E 000 000 000 000 000 05 15 67 66 70 17 71 70 74 15 30 133 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 27 73 388 323 368 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 90 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 222 193 232 54 60 287 242 292 56 65 304 253 307 67 74 360 300 364 | A 8 C D E COO GOO GOO GOO GOO GOO 13 65 52 65 16 24 122 101 123 18 27 131 109 133 27 35 181 153 187 27 38 191 161 197 35 47 236 205 249 38 49 247 214 261 47 57 293 255 313 | | 0
200
400
600
800 | A B C D E 000 000 000 000 000 12 08 60 55 69 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 258 257 294 76 43 307 311 353 80 44 320 323 367 35 309 376 426 | A B C D E 000 000 000 000 000 09 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 331 295 358 60 64 344 304 371 71 73 396 355 431 | A 8 C D E 000 000 000 000 000 05 15 67 66 70 17 71 70 74 15 30 133 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 45 81 331 335 382 45 81 331 335 382 45 49 403 386 440 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 222 173 232 54 60 287 242 292 56 65 304 253 000 364 71 79 379 312 381 71 79 379 312 381 85 90 437 359 440 | A 8 C 0 0 E COO 000 000 000 000 GOO 13 65 49 61 O8 13 65 52 65 16 24 122 101 133 27 35 181 153 187 27 38 191 161 197 35 47 236 205 249 47 57 293 256 313 50 59 305 266 326 27 333 307 379 | | 1000
1000
1000 | A 8 C D E 000 000 000 000 000 12 08 60 54 63 13 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 76 43 307 311 353 80 44 320 323 314 80 44 320 323 391 81 32 383 391 442 98 52 383 391 442 98 52 383 391 444 109 57 430 444 498 | A B C D E 000 000 000 000 000 09 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 51 279 246 298 58 60 331 295 358 60 64 344 304 371 71 73 396 355 431 73 77 410 366 445 51 85 458 416 501 | A 8 C D E 000 000 000 000 000 05 15 67 66 79 07 17 71 70 70 15 30 133 129 142 17 33 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 293 33 63 271 262 293 35 65 283 273 208 42 77 338 223 348 45 81 331 335 382 54 92 403 386 440 56 95 416 399 454 51 04 463 447 509 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 232 179 232 54 60 287 242 292 54 60 287 242 292 55 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 437 359 440 90 94 459 371 458 103 101 510 416 511 | A 8 C 0 E COO 000 000 000 000 G12 62 49 61 G8 13 65 52 65 16 24 122 101 123 18 27 131 109 133 27 35 181 153 187 38 49 217 214 261 47 57 293 255 313 50 59 305 266 226 62 72 333 307 379 65 74 368 317 393 58 142 354 440 | | 0 200 400 600 800 1000 1200 | A B C D E 000 000 000 000 000 12 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186
184 208 48 27 196 194 220 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 64 350 323 397 442 69 57 430 444 498 115 59 445 458 515 27 64 490 508 572 | A B C D E 000 000 000 000 000 000 09 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 51 279 246 298 58 60 331 295 358 60 64 344 304 371 71 73 396 355 431 71 73 396 355 431 81 85 458 416 501 83 89 470 429 517 59 96 516 480 575 | A 8 C D E 000 000 000 000 000 05 15 67 66 79 07 17 71 70 74 15 30 133 129 142 17 33 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 42 77 339 323 368 42 77 339 323 368 45 81 331 335 382 54 92 403 386 440 56 95 416 399 454 56 107 476 461 523 74 117 520 510 578 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 90 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 232 173 232 54 60 287 242 292 56 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 437 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 | A 8 C 0 E COO 000 000 000 000 612 62 49 61 68 13 65 52 65 68 27 131 109 133 27 38 191 161 197 35 47 236 205 249 47 57 293 255 313 50 59 305 266 226 62 72 353 307 379 65 77 368 137 393 75 81 412 354 440 79 83 425 362 443 79 83 425 502 | | 0 200 400 600 800 1200 1200 1400 | A B C D E 000 000 000 000 000 12 08 60 54 63 13 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 307 311 353 80 44 320 323 367 93 50 369 376 426 98 52 333 391 442 109 57 430 444 498 109 57 430 444 498 115 59 445 456 515 127 64 490 508 572 132 66 506 522 591 132 66 506 522 591 | A B C D E 000 000 000 000 000 000 09 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 33 32 199 175 210 33 32 199 175 210 33 36 210 186 244 44 46 265 235 285 46 51 279 246 298 58 60 331 295 358 60 64 344 304 371 71 73 396 355 431 71 73 376 416 501 81 85 458 416 501 83 89 470 429 517 95 96 516 480 575 96 100 528 476 591 106 108 575 544 648 | A 8 C D E 000 000 000 000 000 05 15 67 66 70 7 17 71 70 74 15 30 133 129 142 17 33 134 140 153 24 47 202 197 219 26 49 214 208 273 208 45 271 262 295 35 65 283 273 208 45 81 351 335 382 45 81 351 335 382 45 82 447 509 65 107 476 461 523 74 117 520 510 578 76 120 532 525 594 86 129 576 572 648 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 90 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 222 193 218 45 0 287 242 292 56 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 437 359 440 90 94 439 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 138 121 615 648 531 668 | A 8 C D E COO COO COO COO COO OB 112 62 49 61 OB 12 42 122 101 123 18 27 131 109 133 27 35 181 153 187 27 38 191 161 197 38 47 236 205 249 38 49 247 214 261 47 57 293 256 313 50 59 305 266 226 62 72 353 307 379 65 74 368 317 393 75 81 412 354 440 77 98 342 343 377 98 90 471 402 502 90 90 471 402 502 95 90 405 413 517 96 97 485 413 517 96 577 495 553 | | 1000
1000
1000
1200
1400 | A B C D E 000 000 000 000 000 12 08 60 54 63 13 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 258 257 294 76 43 307 311 353 80 44 320 323 367 77 45 63 37 311 353 80 44 320 323 367 78 52 383 37 442 109 57 430 444 498 109 57 430 444 498 115 59 445 458 515 127 64 490 508 572 122 66 506 522 591 142 72 550 568 645 147 74 566 833 664 147 74 566 842 714 | A B C D E 000 000 000 000 000 000 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 51 279 246 278 58 60 331 295 358 60 64 344 304 371 77 77 3 396 355 341 77 77 73 396 445 81 85 458 416 501 81 85 458 416 501 95 96 516 480 575 96 100 528 496 591 106 108 575 544 648 109 112 570 557 648 109 112 570 557 648 | A 8 C D E 000 000 000 000 000 05 15 67 66 70 7 17 71 70 74 15 30 133 144 140 153 24 47 202 197 219 26 49 214 208 273 208 45 271 262 295 35 65 283 273 208 45 81 351 335 382 45 81 351 335 382 45 81 351 335 382 45 81 351 335 382 47 104 463 447 509 45 107 476 461 523 74 117 520 510 578 76 120 522 525 577 64 129 576 577 648 88 131 588 587 664 88 131 588 587 664 88 131 588 587 664 88 131 588 587 664 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 90 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 222 193 232 56 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 347 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 138 121 615 490 631 150 127 668 531 668 161 131 673 547 691 172 139 739 585 740 | A 8 C 0 0 E COO 000 000 000 000 B 12 62 49 61 CS 13 65 52 65 16 24 122 101 123 27 35 181 153 187 27 38 191 161 197 35 47 236 205 249 38 49 247 214 261 47 57 273 256 313 50 59 305 266 326 42 72 338 307 379 65 74 368 317 393 75 81 412 354 440 77 82 353 307 379 65 74 368 317 393 75 81 42 354 440 77 9 83 425 342 433 90 90 471 402 502 95 93 485 413 517 103 101 527 450 563 107 103 542 442 578 107 103 542 442 578 108 101 527 450 563 107 103 542 442 578 | | Load 0 200 400 800 1000 1200 1400 1800 2000 Test | A B C D E 000 000 000 000 000 12 08 60 50 54 63 13 08 65 59 69 27 16 121 117 133 30 18 122 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 258 257 294 76 43 307 311 353 80 44 320 323 367 78 50 369 376 426 78 52 383 391 442 109 57 430 444 498 115 59 445 458 515 127 64 490 508 572 132 66 506 522 591 142 77 550 568 645 158 80 608 427 714 154 83 625 643 733 Pollet No. Ad- | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 136 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 51 279 246 298 58 60 331 295 358 60 64 344 304 371 73 77 410 366 445 81 85 458 416 501 83 89 470 429 517 95 96 100 528 496 591 106 108 575 544 698 107 112 590 559 665 115 120 634 607 717 171 123 648 621 733 Poller No. Ad2 | A 8 C D E 000 000 000 000 000 515 67 66 77 07 17 71 70 74 15 30 133 124 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 42 77 338 323 368 42 77 338 323 368 45 81 351 335 332 45 81 351 335 382 45 81 351 335 382 45 97 403 386 440 56 95 416 399 454 63 104 463 447 509 65 107 476 461 523 74 117 520 510 578 66 129 576 577 648 88 131 588 587 664 97 139 630 629 714 98 142 645 644 731 Paller No. Ad3 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 222 193 232 54 60 287 242 292 56 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 437 359 440 90 94 459 371 458 85 90 437 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 138 121 615 490 614 150 127 668 531 668 161 131 693 547 691 172 139 739 585 740 177 143 752 602 761 | A 8 C 0 0 E COO 600 000 000 000 612 62 49 61 68 13 65 52 65 16 24 122 101 133 27 33 181 153 187 27 38 191 161 197 35 47 236 205 249 47 57 293 256 316 50 59 305 266 326 50 74 368 317 393 65 26 26 26 25 396 66 26 26 26 26 26 26 26 26 26 26 26 26 2 | | 1000 1200 1200 1400 1500 1500 1500 1500 1500 1500 15 | A B C D E 000 000 000 000 000 12 08 60 559 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 285 257 294 63 36 285 257 294 63 36 385 391 442 98 52 383 391 442 98 52 383 391 442 98 52 383 391 442 98 52 383 391 442 109 57 430 369 576 426 98 52 383 391 442 98 52 383 391 442 115 59 445 458 515 127 64 490 508 572 126 6506 522 591 142 77 550 568 645 158 80 608 627 714 164 83 625 643 733 Pollet No. Ad- A Pollet No. Ad- A B C D E | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 134 33 32 199 175 210 35 36 210 186 224 44 46 245 235 285 46 51 279 246 298 58 60 331 295 358 60 64 344 304 371 73 77 410 366 445 81 85 458 416 304 73 77 410 366 445 81 85 458 416 304 73 77 410 366 445 81 85 458 416 80 183 89 470 429 517 95 96 516 480 575 96 100 528 496 591 106 108 575 544 648 109 112 590 559 655 115 120 634 607 717 117 123 648 621 733 Polller No. Ad2 A B C D E | A 8 C D E COO 000 000 000 S 15 67 66 79 T 17 71 70 74 S 30 133 144 140 153 44 47 202 197 219 65 49 214 208 232 33 63 271 262 293 55 65 283 273 208 45 81 351 335 382 45 81 351 335 382 45 81 351 335 382 45 81 351 395 323 56 95 416 399 454 63 104 443 447 509 65 107 476 461 523 74 117 520 510 578 76 120 532 525 594 86 129 576 577 648 88 131 588 587 664 97 139 630 629 714 98 142 645 644 731 Puller No. Ad3 A Puller No. Ad3 A B C D E | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 90 62 76 24 30 144 177 140 27 34 159 128 155 39 45 217 181 218 42 50 232 173 232 54 60 287 242 292 56 65 304 253 303 64 30 300 364 71 79 379 312 381 85 90 447 359 440 90 94 459 371 458 85 90 447 359 440 90 94 459 371 458 103 101 510 416 581 111 105 533 429 532 128 117 592 476 593 138 121 615 490 614 150 127 668 531 668 161 131 693 547 691 177 143 762 602 761 Pallet No. Ad4 A B C D E | A 8 C 0 0 E COO 000 000 000 000 612 62 49 61 68 13 65 52 65 16 24 122 101 123 18 27 131 109 133 27 38 191 161 197 35 47 236 205 249 47 57 293 255 313 50 59 005 266 226 62 72 353 307 379 65 74 568 317 393 75 81 412 354 440 79 83 425 362 439 79 80 471 402 502 95 93 485 413 517 103 101 527 450 563 107 103 542 442 578 107 103 542 442 578 107 103 542 442 502 95 93 485 413 517 103 101 527 450 563 107 103 542 442 578 107 103 542 442 578 | | 1000 1200 1200
1400 1500 1500 1500 1500 1500 1500 15 | A B C D E 000 000 000 000 000 12 08 60 50 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 258 257 294 76 43 307 311 353 80 44 320 323 367 76 43 307 311 353 80 44 320 323 367 76 52 383 391 442 77 550 586 545 127 64 479 391 127 64 479 550 586 645 158 80 608 427 714 74 566 583 662 158 80 608 427 73 164 88 C D E 000 000 000 000 000 12 12 26 4 49 61 | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 136 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 31 279 246 298 58 60 331 295 358 60 64 344 304 371 71 73 396 355 431 73 77 410 366 445 81 85 458 416 501 83 89 470 429 517 95 96 510 480 575 541 590 599 106 108 575 544 648 109 112 590 559 655 115 120 634 607 717 117 123 648 621 733 Poller No. Ad2 A B C D E 000 000 000 000 000 000 16 15 60 61 69 | A 8 C D E 000 000 000 000 000 515 67 66 77 07 17 71 70 74 15 30 133 129 142 17 33 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 42 77 338 323 368 42 77 338 323 368 45 81 351 335 332 54 92 403 386 440 56 95 416 399 454 56 95 416 399 454 56 107 476 461 523 74 117 520 510 578 61 120 532 525 594 86 129 576 577 648 88 131 588 587 664 97 139 630 629 714 98 142 645 644 731 Paillet No. Ad3 A 8 C D E 000 000 000 000 000 15 10 61 55 63 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 232 173 232 54 60 287 242 292 56 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 447 359 440 90 94 459 371 458 85 90 477 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 437 139 739 585 740 150 127 668 531 668 151 137 742 602 761 177 143 752 607 761 177 143 752 607 761 177 143 752 607 761 | A 8 C D E COO GOO | | 1000 1000 1200 1200 1200 1200 1200 1200 | A B C D E 000 000 000 000 000 12 08 60 50 54 63 13 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 76 43 307 311 353 80 44 320 323 367 76 43 307 311 353 80 44 320 323 367 78 52 383 391 442 78 52 383 391 442 109 57 400 444 498 115 59 445 456 515 127 64 449 506 572 132 66 506 522 591 142 77 556 586 645 158 80 608 627 714 74 566 583 662 158 80 608 627 714 74 566 583 662 158 80 608 627 714 74 566 583 662 158 80 608 627 714 74 566 583 662 158 80 608 627 714 74 566 583 662 158 80 608 627 714 75 560 683 662 158 80 608 627 714 76 560 500 000 000 000 12 12 64 49 61 13 13 68 52 65 24 22 128 95 123 | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 61 279 246 298 58 60 331 295 358 60 64 344 304 371 71 73 396 355 431 73 77 410 366 445 81 85 458 416 501 83 89 470 429 517 95 96 516 480 575 96 100 528 496 591 106 108 575 94 107 127 594 115 120 634 607 717 171 713 648 621 733 Poller No. Ad2 A B C D E 000 000 000 000 000 000 16 15 60 61 69 17 16 64 65 73 27 29 121 118 137 | A 8 C D E 000 000 000 000 000 515 67 66 77 07 17 71 70 74 15 30 133 129 142 17 33 144 140 153 24 47 202 177 217 25 49 214 208 232 33 63 271 262 295 35 65 283 273 208 42 77 338 323 348 45 81 351 333 332 45 81 351 333 332 45 81 351 353 399 454 45 81 351 520 510 578 46 120 532 525 594 48 129 572 648 88 131 588 587 664 97 139 630 629 714 Paller No. Ad3 A B C D E 000 000 000 000 000 15 10 61 55 63 16 11 67 61 70 34 18 125 114 131 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 232 179 3 232 54 60 287 242 292 54 60 287 242 292 55 66 55 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 437 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 138 121 615 490 614 150 127 668 317 659 138 121 615 490 614 150 127 648 70 547 172 139 739 555 740 172 139 739 555 740 177 143 762 502 761 Pailler No. Ad4 A 8 C D E 000 000 000 000 000 000 000 000 000 17 63 70 73 06 18 68 76 79 13 32 125 141 146 | A 8 C 0 D E COO COO 000 000 000 612 62 49 61 68 13 65 52 65 16 24 122 101 123 18 27 131 109 133 27 33 181 153 187 33 47 236 205 249 47 27 214 261 47 57 293 255 313 50 59 305 266 326 42 72 333 307 379 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 77 368 317 393 65 78 31 412 354 440 79 83 425 362 453 79 83 425 362 453 79 83 425 362 453 79 83 425 362 453 18 117 356 505 429 95 93 485 413 517 103 101 327 430 563 107 103 542 462 578 118 117 566 505 429 121 120 602 519 646 Pollet No. Ad5 A 8 C D E 000 000 000 000 000 000 10 08 57 54 60 10 09 61 58 63 11 18 117 116 126 | | 1000 1000 1200 1400 1500 1500 1500 1500 1500 1500 15 | A B C D E 000 000 000 000 000 12 08 60 55 4 63 13 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 224 279 76 43 307 311 353 80 44 320 391 426 98 52 383 391 426 98 52 383 391 426 109 57 430 444 498 115 59 445 458 515 127 64 40 508 572 132 66 504 522 591 132 66 504 522 591 147 74 566 583 662 158 80 608 527 714 147 74 566 583 662 158 80 608 645 147 74 566 583 662 158 80 608 572 132 66 504 522 591 142 77 550 568 645 147 74 566 583 662 158 80 608 572 132 66 504 527 714 154 88 C D B E 000 000 000 000 000 12 12 64 49 61 13 13 68 52 64 21 22 128 95 123 22 24 139 194 143 192 147 191 | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 66 64 344 304 325 66 64 344 304 325 58 60 331 295 358 60 64 344 304 325 58 60 331 295 358 60 64 344 304 325 58 60 331 295 358 60 64 344 304 325 58 60 331 295 358 60 64 344 304 325 58 60 351 295 555 60 16 480 575 96 100 528 496 591 106 108 575 544 648 109 112 590 559 665 115 120 654 607 717 171 723 648 621 733 Paller No. Ad2 A B C D E 000 000 000 000 000 16 15 60 61 69 17 16 64 65 73 27 29 121 118 137 29 33 133 133 150 29 33 133 133 153 | A 8 C D E 000 000 000 000 000 05 15 67 66 79 07 17 71 70 74 15 30 133 129 142 17 33 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 42 77 338 323 348 45 81 331 335 383 45 92 403 386 440 56 95 416 399 454 65 107 476 461 523 74 117 520 510 578 76 120 532 525 594 86 129 576 572 648 88 131 588 587 664 97 139 630 629 714 Pallet No. Ad3 A B C D E 000 000 000 000 000 15 10 61 55 63 16 11 67 61 70 34 18 125 114 131 37 21 137 125 145 54 28 192 177 207 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 232 179 3232 54 60 287 242 292 55 66 5 304 253 307 67 74 360 300 364 85 90 437 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 138 121 615 490 614 150 127 648 531 668 161 131 693 547 691 172 139 739 585 740 177 143 762 602 761 Pallet No. Ad4 A 8 C D E 000 000 000 000 000 05 17 63 70 73 06 18 68 76 79 13 32 125 141 146 15 36 136 135 159 190 215 190 214 225 | A 8 C D E COO COO COO COO COO 61 12 62 49 61 68 13 65 52 65 16 24 122 101 123 18 27 131 109 133 27 33 181 153 187 33 47 236 205 249 47 57 293 256 313 50 59 305 266 226 64 72 353 307 379 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 77 368 317 393 65 78 38 42 354 79 83 425 362 453 79 83 425 362 453 107 103 101 257 450 563 107 103 542 462 578 118 117 586 505 629 121 120 602 519 646 Pollet No. Ad5 Pollet No. Ad5 A B C D E COO COO COO COO COO 10 08 57 54 60 10 09 61 116 126 24 21 129 127 139 33 31 184 183 202 | | 2000 4000 4000 12000 12000 12000 2000 20 | A B C D E 000 000 000 000 000 12 08 60 54 63 13 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 238 257 294 63 36 238 257 294 63 36 238 257 294 63 36 238 257 294 63 36 238 257 294 63 36 238 257 294 63 36 238 257 294 64 307 311 353 80 44 320 323 367 63 36 369 376 426 98 52 383 391 442 109 57 430 444 498 115 59 445 458 515 127 64 490 508 572 124 64 490 508 572 125 650 522 591 142 77 550 588 645 147 74 566 508 522 591 142 72 550 588 645 147 74 566 508 522 591 148 83 628 627 714 154 88 62 643 733 Pollet No. Ad- 8 C D E 000 000 000 000 000 000 12 12 64 49 61 13 13 68 52 65 24 22 128 95 123 27 24 139 104 135 38 33 192 147 191 40 35 204 157 203 38 33 192 147 191 40 35 204 157 203 50 44 254 197 257 | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 134 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 51 279 246 298 60 64 344 304 371 77 74 396 355 431 73 77 410 366 445 81 85 458 416 501 83 89 470 429 517 95 96 516 480 575 96 100 528 496 591 106 108 575 544 648 109 112 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 559 645 109 12 590 590 645 117 16 64 57 373 Puller No. Adz A B C D E 000 000 000 000 000 16 15 60 61 69 17 16 64 57 33 27 29 121 118 137 27 39 133 133 131 150 38 44 191 181 215 41 48 205 194 230 51 58 261 240 290 | A 8 C D E 000 000 000 000 000 05 15 67 66 79 07 17 71 70 74 15 30 133 129 142 17 33 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 42 77 339 323 348 45 81 331 335 382 54 92 403 386 440 56 95 416 399 454 65 107 476 461 523 74 117 520 510 578 76 120 532 525 594 88 131 588 587 664 97 139 630 629 714 Pallet No. Ad3 A 000 000 000 000 000 15 10 61 55 63 A 000 000 000 000 000 15 10 61 55 63 A 000 000 000 000 000 15 10 61 55 63 A 000 000 000 000 000 15 10 61 55 63 A 18 125 114 131 37 21 137 125 145 54 28 192 177 207 57 31 205 189 221 71 38 257 238 279 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 90 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 222 193 232 54 60 287 242 292 56 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 447 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 138 121 615 490 614 150 127 668 531 668 161 131 693 531 668 161 131 693 531 668 161 131 693 532 426 177 143 762 602 761
Pailler No. D4 Pailler No. D4 R 8 C D E 000 000 000 000 000 000 05 17 63 70 73 06 18 68 76 79 13 32 125 141 146 15 36 134 153 159 23 50 190 214 225 26 54 203 227 239 34 66 257 283 301 | A 8 C D E COO COO COO COO COO G12 62 49 61 G8 13 65 52 65 16 24 122 101 123 27 33 181 153 187 27 38 191 161 197 35 47 236 205 249 38 49 247 214 261 47 57 293 256 326 59 305 266 326 27 233 307 379 65 74 368 317 393 75 81 412 334 343 75 81 412 352 75 90 471 402 502 77 98 342 536 446 Pollet No. CO E COO COO COO COO COO 10 G8 57 A4 64 Pollet No. CD E COO COO COO COO COO 10 G8 57 54 60 118 117 586 55 64 21 129 127 139 33 31 184 183 202 34 34 196 1195 215 33 34 196 1195 215 33 34 196 1195 215 34 244 258 274 | | 1000 1200 1200 1200 1200 1200 1200 1200 | A B C D E 000 000 000 000 000 12 08 60 54 63 13 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 285 257 294 63 36 285 257 294 63 36 285 257 294 63 36 285 257 294 63 36 285 257 294 64 307 311 353 80 44 320 323 367 64 33 07 311 353 80 44 320 323 367 69 52 383 391 442 109 57 430 349 376 426 98 52 383 391 442 109 57 430 349 376 426 98 52 383 391 442 109 57 430 369 376 426 158 80 608 627 714 151 59 45 49 508 158 80 608 627 714 164 83 625 643 733 40 151 151 152 600 000 000 000 000 000 12 12 64 49 00 12 12 64 49 00 13 13 68 52 65 24 22 128 95 123 72 24 139 104 135 38 33 192 147 191 40 35 204 157 203 50 44 254 197 257 52 47 267 207 269 52 47 267 207 269 | A B C D E | A 8 C D E COO 000 000 000 000 S 15 67 66 79 OT 17 71 70 74 15 30 133 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 205 45 81 351 335 382 45 81 351 335 382 45 81 351 335 382 45 92 403 386 440 56 95 416 399 454 63 104 463 447 509 65 107 476 461 233 74 117 520 510 578 86 129 576 577 648 88 131 588 587 664 97 139 630 629 714 98 142 645 644 731 Pallet No. Ad3 A B C D E COO 000 000 000 000 15 10 61 55 63 16 11 67 61 70 34 18 125 114 137 21 137 125 145 54 28 192 177 207 57 31 205 189 221 71 38 257 238 279 74 41 271 250 255 74 41 271 250 255 74 38 257 238 279 74 41 271 250 255 74 38 257 238 279 74 41 271 250 255 78 47 323 297 351 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 90 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 232 173 232 54 60 287 242 292 56 65 002 424 292 56 65 004 425 371 488 57 90 74 430 300 364 71 79 379 312 381 85 90 447 359 440 90 94 459 371 458 103 101 510 416 510 103 101 510 416 510 103 101 510 416 510 103 101 510 416 510 103 101 57 674 76 593 103 101 57 648 531 668 107 143 762 602 761 141 143 762 602 761 150 161 519 695 512 177 13 767 677 697 177 13 767 677 18 8 C D E 000 000 000 000 000 05 17 63 70 73 06 18 68 76 79 13 32 125 141 146 15 36 136 153 159 23 50 190 214 225 26 54 203 227 239 34 66 257 283 301 38 70 271 277 316 46 83 323 333 375 | A 8 C D E COO GOO | | Coed 0 200 400 400 1200 1200 1200 1200 Test Lood 0 2000 400 400 800 800 | A B C D E 000 000 000 000 000 12 08 60 55 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 64 307 311 353 80 44 320 323 367 78 52 383 391 442 109 57 430 444 498 115 59 445 458 515 127 64 470 508 572 132 66 506 522 591 142 77 556 568 645 158 80 608 627 714 154 83 625 643 733 154 83 625 643 733 154 83 652 656 156 80 608 627 714 164 83 627 714 164 83 627 72 591 164 93 627 649 173 13 68 52 65 164 93 617 293 50 44 254 197 257 50 318 245 322 64 38 311 254 335 54 357 267 279 279 269 384 | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 136 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 51 279 246 298 58 60 331 295 358 60 64 344 304 371 73 77 410 366 455 81 85 458 416 501 83 89 470 429 517 95 96 516 480 575 58 18 55 458 416 501 81 85 575 544 648 109 112 590 559 665 115 120 634 607 717 117 123 648 621 733 Paller No. Ad2 A B C D E 000 000 000 000 000 16 15 60 61 69 17 16 64 65 73 27 29 121 118 137 27 29 33 133 131 150 38 44 191 181 215 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 331 331 318 33 | A 8 C D E 000 000 000 000 000 515 67 66 79 07 17 71 70 74 15 30 133 124 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 42 77 338 323 368 45 81 351 335 332 45 81 351 335 332 45 81 351 335 332 45 81 351 335 335 47 203 386 440 56 95 416 399 454 65 95 416 399 454 65 107 476 461 523 74 117 520 510 578 86 129 576 572 648 88 131 588 587 664 97 139 630 629 714 98 142 645 644 731 Paller No. Ad3 A 8 C D E 000 000 000 000 000 15 10 61 55 63 16 11 67 61 70 34 18 125 114 131 37 21 137 125 145 54 28 192 177 207 31 1205 189 221 71 38 257 238 279 74 41 271 250 295 88 47 323 297 351 90 51 339 309 366 57 390 355 423 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 222 193 232 54 60 287 224 292 56 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 437 359 440 90 94 459 371 458 85 90 437 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 437 359 440 130 101 570 416 511 111 105 533 429 532 128 117 592 347 559 172 139 739 585 740 177 143 762 602 761 761 137 762 602 761 761 150 150 416 511 177 143 762 602 761 761 151 36 133 159 351 36 136 135 159 23 36 136 135 159 23 50 190 214 225 24 25 271 279 316 46 83 323 353 375 51 88 341 369 397 46 83 323 353 375 51 88 341 369 397 46 87 399 391 426 451 | A 8 C D E COO GOO GOO GOO GOO GOO GOO GOO GOO GOO | | Coed 0 200 400 400 1000 1200 1200 0 2000 400 600 600 1000 1000 | A B C D E 000 000 000 000 000 12 08 60 50 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 224 279 73 50 369 376 426 76 43 307 311 353 80 44 320 323 367 76 43 307 311 353 80 44 320 323 367 76 43 307 311 353 80 54 345 359 379 442 109 57 400 444 498 115 59 445 458 515 127 64 490 508 575 127 64 56 568 645 127 64 506 522 591 142 77 550 568 645 158 80 608 427 714 146 83 625 643 733 Pollet No. Ad- A B C D E 000 000 12 12 64 49 61 13 13 68 52 65 16 37 92 92 147 20 38 33 192 147 191 40 35 204 157 203 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 64 58 311 254 335 74 66 379 292 384 77 69 392 302 397 77 76 440 339 446 | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 136 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 46 51 279 246 298 58 60 331 295 358 60 64 344 304 371 71 73 396 355 431 73 77 410 366 445 81 85 458 416 501 83 89 470 429 517 95 96 516 480 517 95 96 516 480 577 96 100 528 496 591 106 108 575 544 648 109 112 590 559 655 115 120 634 607 717 117 123 648 621 733 Poller No. Ad2 A B C D E 000 000 000 16 15 60 73 117 123 498 621 733 Poller No. Ad2 A B C D E 000 001 000 16 15 60 61 69 17 16 64 65 73 27 29 121 118 137 29 33 133 133 150 38 44 191 181 150 38 44 191 181 150 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 51 58 261 240 290 53 371 331 298 366 66 76 345 312 383 76 86 399 358 440 79 90 413 372 457 79 91 413 317 298 366 66 76 345 312 383 76 86 399 358 440 79 90 413 372 457 | A 8 C D E 000 000 000 000 000 05 15 67 66 79 07 17 71 70 74 15 30 133 129 142 17 33 144 140 153 24 47 207 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 45 81 331 333 332 45 81 331 333 332 45 81 331 333 332 45 81 331 353 332 45 81 331 353 332 45 81 331 353 322 46 97 139 454 440 153 46 443 447 509 65 107 476 461 523 74 117 520 510 572 74 117 520 510 572 74 117 520 510 572 74 117 520 510 572 74 117 520 510 572 74 117 520 510 572 74 117 520 510 572 74 117 520 510 572 75 131 588 587 664 77 139 630 629 714 88 131 588 587 664 77 139 630 629 714 88 131 588 587 664 77 139 630 629 714 88 131 588 587 664 77 139 630 629 714 81 122 645 644 731 8 | A 8 C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 232 193 232 54 60 287 242 292 56 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 437 359 440 90 94 459 371 458 85 90 437 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 138 121 615 490 614 150 127 668 531 668 161 331 673 547 691 177 143 762 602 761 Pallet No. Ad4 A 8 C D E 000 000 000 000 000 05 17 63 70 73 06 18 68 76 79 173 32 125 141 146 15 36 130 153 159 23 50 190 214 225 26 54 203 227 239 34 66 257 283 301 46 83 323 353 375 51 88 334 335 375 51 88 334 335 375 51 88 334 335 375 51 88 334 335 375 51 88 334 335 375 51 88 334 335 375 51 88 341 339 372 66 102 409 391 426 451 66 102 409 424 470 71 111 458 496 526 | A 8 C D E COO GOO | | Coed 0 200 400 400 1200 1200 1200 1200 1200 | A B C D E 000 000 000 000 000 12 08 65 59 69 27 16 121 117 133 30 18 132 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 224 279 76 43 307 311 353 80 44 320 323 367 76 43 307 311 353 80 44 320 323 367 78 52 383 391 442 109 57 400 444 498 115 59 445 456 515 127 64 49 508 572 132 66 504 522 591 142 77 556 586 645 158 80 608 627 714 144 77 556 588 662 158 80 608 627 714 144 77 556 588 662 158 80 608 627 714 142 77 556 588 662 158 80 608 527 591 142 77 556 588 662 158 80 608 527 591 142 77 556 588 662 158 80 608 527 591 142 77 556 588 662 158 80 608 527 591 142 77 556 588 662 158 80 608 527 591 142 77 556 588 662 158 80
608 527 591 142 77 556 588 662 158 80 608 572 132 66 504 522 127 24 199 104 135 108 68 52 65 24 22 128 95 123 27 24 139 104 135 50 447 267 207 269 62 55 318 254 177 257 50 47 267 207 269 62 55 318 245 322 27 24 139 104 135 50 447 267 207 269 62 55 318 245 325 24 68 331 254 335 74 66 379 292 387 87 76 440 339 446 90 79 454 335 1462 | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 60 64 344 304 371 73 77 410 366 445 65 16 490 575 96 100 528 496 591 106 108 575 559 645 115 120 634 607 717 171 73 396 355 115 120 634 607 717 117 123 648 621 733 Poller No. Ad2 A B C D E 000 000 000 000 000 16 15 69 66 67 71 17 16 64 65 73 27 29 121 118 137 29 33 133 131 150 10 10 500 00 000 000 16 15 64 65 73 27 29 121 118 137 29 33 133 133 150 15 120 634 607 717 17 16 64 65 73 29 33 133 131 150 16 64 65 73 29 33 133 133 150 51 58 261 240 290 54 62 275 254 307 63 71 331 299 366 64 76 86 399 358 440 57 90 443 416 513 93 102 477 432 529 88 99 443 416 513 93 102 477 432 529 101 111 524 475 583 | A 8 C D E 000 000 000 000 000 05 15 67 66 79 07 17 71 70 74 15 30 133 129 142 17 33 144 140 153 24 47 202 177 217 25 214 202 252 33 63 271 262 295 34 62 373 383 323 388 45 81 351 353 382 45 81 351 335 382 45 81 351 353 382 45 81 351 353 382 45 81 351 353 382 45 81 351 500 578 76 120 532 525 594 86 129 574 572 664 77 139 630 647 88 131 588 587 664 77 139 630 627 714 Pallet No. Ad3 A B C D E 000 000 000 000 000 15 10 61 70 E 000 000 000 000 000 15 10 61 76 61 70 34 18 125 114 131 37 21 137 125 145 54 28 192 177 207 57 31 205 189 21 71 38 257 238 279 54 11 271 250 295 88 47 323 279 57 31 205 189 21 71 38 257 238 279 54 11 271 250 295 88 47 323 279 57 31 205 189 21 71 38 257 238 279 54 11 37 329 309 366 106 57 390 355 423 112 66 455 413 493 131 70 473 488 511 131 70 473 488 511 131 70 473 488 511 131 70 473 488 511 | A B C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 287 242 292 54 60 287 242 292 55 66 53 034 253 307 67 74 360 300 364 71 79 379 304 323 381 85 90 437 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 138 121 615 490 514 150 127 685 531 668 161 131 693 547 691 172 139 739 585 740 177 143 762 602 761 Paillet No. Ad4 A B C D E 000 000 000 000 000 517 63 70 73 06 18 68 76 79 173 32 125 141 146 15 36 136 153 159 000 000 000 000 000 517 63 70 73 06 18 68 76 79 13 32 125 141 146 15 36 136 153 159 160 190 214 225 26 54 203 227 391 34 66 257 283 303 375 66 102 476 478 511 545 66 102 478 511 545 66 102 478 511 545 66 102 478 511 545 65 114 478 511 546 85 114 478 511 546 85 114 478 511 546 85 114 478 511 546 | A 8 C D E COO GOO GOO GOO 612 422 497 61 68 13 65 52 65 16 24 122 101 123 18 27 131 109 133 27 33 181 153 187 33 47 236 205 249 47 27 214 261 47 57 293 256 316 50 57 305 266 326 42 72 333 307 379 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 77 368 317 393 65 78 31 412 354 440 79 83 425 362 453 79 83 425 362 453 79 83 425 362 453 18 117 586 505 429 65 93 485 413 517 103 101 257 430 563 107 103 542 462 578 118 117 586 505 429 118 117 586 505 429 121 120 602 519 646 Pollet No. Ad5 A 8 C D E COO GOO GOO GOO GOO 000 GOO GOO GOO 10 08 57 54 60 10 09 61 58 63 118 117 116 126 24 21 129 127 139 33 31 184 183 202 36 34 196 195 215 46 428 262 290 59 53 311 314 348 24 21 229 127 139 36 34 196 195 215 46 428 262 290 59 53 311 314 348 72 65 375 380 421 76 70 390 395 437 86 76 440 444 492 87 82 456 459 510 59 89 504 505 564 | | Coed 0 200 400 400 1200 1200 1200 1200 1200 | A B C D E | A B C D E 000 000 000 000 000 9 10 67 54 67 10 10 71 58 71 20 19 131 112 136 23 23 142 122 148 33 32 199 175 210 35 36 210 186 224 44 46 265 235 285 66 67 34 399 355 431 73 77 410 366 445 61 84 8 C D B E 000 000 000 000 000 16 15 60 64 67 71 71 23 648 621 Poller No. Ad2 A B C D E 000 000 000 000 16 15 60 61 69 17 16 64 65 73 Poller No. Ad2 A B C D E 000 000 000 000 16 15 60 61 69 17 16 64 65 73 27 29 121 118 137 29 33 133 131 150 117 120 348 621 240 127 29 121 118 137 29 33 133 133 150 15 86 67 345 312 383 76 86 399 358 440 79 90 413 372 457 88 99 443 416 513 87 99 143 372 457 88 99 443 416 513 88 99 443 416 513 89 102 477 432 529 101 111 524 475 583 105 114 538 490 602 114 121 583 531 654 | A 8 C D E 000 000 000 000 000 515 67 66 79 07 17 71 70 74 15 30 133 129 142 17 33 144 140 153 24 47 202 197 219 25 49 214 208 232 33 63 271 262 295 35 65 283 273 208 42 77 339 323 382 54 92 403 386 440 56 95 416 399 454 56 107 476 461 523 74 117 520 510 578 76 120 522 525 594 88 131 588 587 664 97 139 630 629 714 88 125 114 131 37 21 137 825 64 18 125 114 131 37 21 137 125 145 16 11 67 61 70 57 31 205 189 221 74 41 271 250 57 31 205 189 221 73 38 257 238 279 74 41 271 250 250 57 31 205 189 221 71 38 257 238 279 74 41 271 250 250 57 31 205 189 221 71 38 257 238 279 74 41 271 250 250 57 31 205 189 221 73 31 205 189 221 74 41 271 250 250 57 31 205 189 221 74 41 271 250 255 88 47 323 279 351 92 51 339 309 366 6 57 390 355 423 125 66 455 413 493 125 66 455 413 493 125 66 455 413 493 125 66 455 413 493 125 66 455 413 493 125 66 455 413 493 125 66 455 413 493 125 66 455 438 531 131 70 479 428 551 146 76 522 474 566 151 79 539 489 585 55 588 533 639 | A B C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 117 140 27 34 159 128 155 39 45 217 181 218 42 50 232 179 3232 54 60 287 242 292 55 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 437 359 440 90 94 459 371 458 103 101 510 416 511 111 105 533 429 532 128 117 592 476 593 138 121 615 490 614 150 127 648 531 668 161 131 693 547 691 172 139 739 585 740 177 143 762 602 761 Pallet No. Ad4 A B C D E 100 000 000 000 000 05 17 63 70 73 16 18 68 76 79 173 32 125 141 146 15 36 136 135 159 26 54 203 227 239 36 69 257 283 301 38 70 271 297 316 46 83 323 353 375 51 88 341 369 392 60 99 391 426 451 51 48 496 526 61 125 549 49424 470 77 111 459 456 558 97 123 526 559 602 108 125 549 618 676 | A 8 C D E COO GOO GOO GOO B12 62 49 61 CS 13 65 52 65 16 24 122 101 123 27 33 181 153 187 35 181 153 187 35 181 153 187 35 47 236 205 249 47 57 293 256 313 50 59 305 266 226 64 72 353 307 379 65 74 368 317 393 65 77 368 317 393 65 78 36 42 354 67 88 40 257 81 42 354 440 79 83 425 362 459 90 90 471 402 502 95 93 485 413 517 103 101 527 450 563 107 103 542 442 578 118 117 103 101 527 450 60 000 000 000 000 10 08 57 54 60 10 09 61 56 63 118 117 116 126 24 21 129 127 139 30 31 184 183 202 36 34 196 195 215 50 46 248 242 258 36 37 324 329 36 34 196 195 215 50 46 248 242 258 57 53 311 314 348 36 37 324 393 36 34 196 195 215 50 46 248 242 258 57 53 311 314 348 36 37 324 393 36 37 324 393 36 37 324 393 37 324 393 38 39 394 444 492 59 53 375 380 421 76 70 390 395 447 84 76 440 444 492 87 82 456 459 510 98 95 504 505 566 98 95 504 505 566 | | Coed 0 2000 4000 10000 12000 1 | A B C D E 000 000 000 000 000 12 08 60 559 69 27 16 121 117 133 30 18 122 126 145 44 25 186 184 208 48 27 196 194 220 60 34 245 246 279 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 63 36 258 257 294 64 307 311 353 80 44 320 323 367 78 52 383 391 442 107 57 430 444 498 115 59 445 458 515 127 64 470 508 572 132 66 506 522 591 142 77 550 568 645 158 80 608 627 714 154 83 625 643 733 144 88 C D E 000 000 000 000 000 12 12 64 49 61 13 13 68 52 65 147 74 566 583 662 158 80 408 427 714 164 83 327 291 178 90 100 000 000 12 12 64 49 61 13 13 68 52 65 147 74 566 583 662 158 80 408 427 714 164 83 31 92 147 191 40 35 204 157 203 50 44 254 197 257 50 44
254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 254 197 257 50 44 359 340 50 318 34 | A B C D E | A 8 C D E 000 000 000 000 000 515 67 66 79 07 17 71 70 74 15 30 133 144 140 153 24 47 202 197 219 26 49 214 208 232 33 63 271 262 295 35 65 283 273 208 42 77 338 323 368 45 81 351 335 332 45 81 351 335 332 45 81 351 335 382 45 81 351 335 382 45 81 351 355 355 47 240 3 386 440 56 95 416 399 454 63 104 463 447 509 645 107 476 461 523 74 117 520 510 578 86 129 576 577 648 88 131 588 587 664 97 139 630 629 714 98 142 645 644 731 Pallet No. Ad3 A 8 C D E 000 000 000 000 000 15 10 61 55 63 16 11 67 61 70 34 18 125 114 131 37 21 137 125 145 54 28 192 177 207 34 18 125 114 131 37 21 137 125 145 54 28 192 177 207 34 18 125 114 131 37 21 137 125 145 54 28 192 177 207 34 18 125 114 131 37 21 137 125 145 54 28 192 177 207 34 18 125 114 131 37 21 137 125 145 54 32 39 39 366 65 7 390 355 423 112 60 405 366 438 131 70 473 428 511 146 76 522 474 566 151 79 539 489 585 | A B C D E 000 000 000 000 000 11 14 73 57 69 12 16 80 62 76 24 30 144 177 140 27 34 159 128 155 39 45 217 181 218 42 50 222 193 232 54 60 287 242 292 56 65 304 253 307 67 74 360 300 364 71 79 379 312 381 85 90 447 359 440 90 94 459 371 458 85 90 447 359 440 90 94 459 371 458 150 310 1510 416 511 111 105 533 429 532 128 117 592 447 593 138 121 615 490 614 150 127 668 531 668 161 131 679 547 659 172 139 739 585 740 177 143 762 602 177 143 77 670 177 143 176 670 73 06 18 68 76 79 13 32 125 141 146 15 36 136 153 159 23 50 190 214 225 65 403 227 239 34 66 257 283 301 150 136 153 159 23 50 190 214 225 65 403 227 239 34 66 257 283 307 51 38 341 369 372 60 99 391 426 451 66 102 409 442 470 60 99 391 426 451 66 102 409 442 470 77 111 458 466 526 85 114 478 511 545 97 123 526 559 602 86 599 574 624 | A 8 C D E COO GOO GOO GOO GOO 612 62 49 61 68 13 65 52 65 16 24 122 101 133 27 35 181 153 187 27 38 191 161 197 35 47 236 205 249 38 49 247 214 261 47 57 293 256 313 50 59 305 266 266 27 333 307 379 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 74 368 317 393 65 77 368 317 393 65 77 368 317 393 65 77 368 317 393 65 77 368 317 393 65 77 368 317 393 65 77 368 317 393 65 77 368 317 393 65 37 368 440 67 96 37 54 460 60 00 000 000 000 60 000 000 000 00 | #### Detailed Load-Deflection Data, in Lb. and 1/1000 in. Poliets of Improved Design | Test
Lord
0
200
400
800
1000
1400
1600 | A 0000 144 16 31 34 48 51 633 677 982 93 107 111 122 125 136 141 152 | Pollet No. 8 C 000 000 000 000 000 000 000 000 000 | D 000 40 43 83 790 176 186 221 230 245 275 274 308 318 350 360 360 433 433 | £ 000 504 103 1112 160 227 272 284 328 340 389 3434 447 487 500 538 | A 000 11 12 25 28 41 45 59 63 75 80 92 98 107 114 134 136 145 158 | 12 | 0 000 000 000 000 000 000 000 000 000 | 117
168
180
230
243
293
307
355
369
418
434
484
501
547
563
608 | Ph
A 000
12
13
24
27
36
41
49
53
62
67
78
86
90
98
101
108
119 | | D 000 000 05 14 45 14 45 14 15 11 93 19 101 10 10 10 10 10 10 10 10 10 10 10 10 | 55 59 111 155 11 | Palta A & 100 3000 (08 181 223 25 24 33 25 24 44 44 45 57 17 75 66 97 26 97 27 225 87 225 87 240 90 101 101 101 101 101 101 101 101 101 | 49
55
603
1 157
1 158
1 211
224
7 271
9 284
9 342
9 342
1 443
7 457
1 457
1 547 | 0 6 60 00 6 6 115 1124 11172 11183 2228 2241 2228 3356 3599 44453 55513 55513 5557 66 | E A 000 0000 63 08 68 09 22 20 32 22 87 33 00 35 | 8
000
06
06
14
16
23
25
32
35
43
45
56
64
74
76
84 | No. 865
C D
000 000
48 46
48 46
53 51
100 99
108 106
153 154
153 154
202 261
202 261
203 314
323
3350 373
301 413
442 445
445 462
473
498 507 | 51
55
109
1172
183
233
245
295
306
412
424
471
483
529
543 | |--|--
--|--|--|---
--|--|---|--|--|---|--|---
--|---|--|--|---|---| | 2000
Test | 156 | 80 512
Pallet No | 445 | 552 | 161 | 150 54
allet N | 17 536 | 625 | 122 | 101 4
Her N | 7 489 5 | | 53 104 | 562 | 560 64 | 40 118 | 98 : | 511 520 | | | Logd | A | 8 C | D | E | A | 8 0 | . D | E | A | 8 (| D | - | Polie
A 8 | C | 964
D E | | 3 | Vo. 865
C D | E | | 0
200
400
600 | 10
12
24
26
35 | 000 000
10 45
13 54
24 101
27 105
38 151 | 43
47
91
99
142 | 50
55
106
116
164 | 12
13
27
30
41 | 09 :
18 :
20 :
29 : | 19 42
54 46
78 90
36 97
17 139 | 51
56
106
114 | 000
13
14
27
30
43 | 09 (
18 1
21 1;
30 1 | 55 47
50 49
10 97
10 104
56 147 | 57
60
114
125
177 | 000 000
09 08
10 08
21 18
24 18
37 27 | 49
52
98
106 | 46
49
99 10
108 11 | 72 33 | 06
07
15
17
24 | 000 000
39 50
42 54
84 106
93 115
134 167 | 43
47
100
110 | | 800 | 38
46 | 41 159
50 200 | 189 | 173
219 | 43
54 | 31 15 | 188 | | 46
58 | 32 11
39 21 | 0 197 2 | 237 | 40 27
52 34 | 202 | 212 23 | 82 35
32 46 | 35 | 142 179
182 228 | 227 | | 1000 | 48
56
58 | 53 206
63 249
66 258 | 238 | 229
275
287 | 57
68
71 | 40 20
48 23
49 24 | 39 238 | 230
273
285 | 63
75
79 | 43 2
49 2
53 2 | 73 243 2 | 295 | 54 35
67 41
71 42 | 254 | 267 25 | 43 49
95 60
07 63 | 45 2 | 191 240
230 287
241 299 | 208 | | 1200 | 67
70 | 75 295
78 305 | 284
295 | 331
342 | 81
84 | 57 26
59 29 | 34 286
73 295 | 327
337 | 91
95 | 60 3 | 24 390 3
36 301 3 | 352
365 | 82 47
86 49 | 308 | 322 35
333 36 | 56 75
68 77 | 54 2
57 2 | 279 344
290 358 | 350
364 | | 1400 | 78
81 | 86 342
89 352
98 389 | 344 | 386
397
440 | 93
96 | 65 33
68 33
74 34 | 37 342 | 377
388 | 106 | 70 3 | 6 347 | 421 1 | 98 54
102 54 | 375 | 387 42 | 16 89
29 92
76 103 | 63 : | 328 402
341 416
380 462 | 425 | | 1600 | 90
93
101 | 98 389
100 399
106 435 | 389 | 452
493 | 106
109
119 | 74 34
76 38
82 41 | 30 389 | 427
440
479 | 121
125
136 | 81 42
84 43
92 44 | 32 392 4 | 475 1 | 112 62
117 63
127 68 | 429 | 441 49 | 76 103
90 106
36 118 | 74 : | 380 462
391 476
429 521 | 488 | | 1800 | 105 | 111 44 | 437 | 508
549 | 122 | 84 42
90 45 | 24 437
34 469 | 490
526 | 140
150 | 95 42
102 5 | 79 437 5
10 469 5 | 531 !
570 ! | 31 70
40 74 | 484
522 | 495 55
531 59 | 51 122
96 134 | 83 4
88 4 | 142 536
179 577 | 550
595 | | Test | 120 | 120 495
Pallet No | | 563 | 134 | 92 44
Hist N | | 542 | 154 | 106 52
allet N | | 586 1 | 45 76 | | 545 61
Be4 | 12 138 | 90 4 | 191 591 | 612 | Load | ~~ | 8 C | D | E
OOO | A | 8 (| : D | E
non | A | 8 (| D | E . | A B | c · | D E | | | C D | E one | | 200 | 000 | 000 000
08 46 | 000 | 000
56 | A | 8 C | D
00 000
19 43 | 000
52 | A
000
10 | 8 (
000 00
08 / | : D
10 000 0
18 38 | 000 0
46 | A B
000 000
13 12 | C 000
2 57 | D E | . A
00 000
57 09 | 8
000 0
 C D
200 000
52 34 | 000
57 | | 0 | | 000 000 | 000
56
60 | 56
60
114
123 | A
000
11
12
23
26 | 8 0
000 00
10 4
12 5
24 10
27 10 | D 000 000 19 43 46 11 90 99 99 | 52
55
109
118 | A
000
10
11
21
24 | 8 0
000 00
08 4
09 5
19 10
21 1 | D 0000 0
8 38
52 42
93 86
12 93 | 000 0
46
50
101
110 | A B
000 000
13 12
15 13
27 27
31 30 | C 000
2 57
3 62
7 119
0 129 | D E 000 00 49 5 53 6 106 12 116 13 | . A
00 000
57 09
63 10
22 23
33 26 | 8
000 0
13
14
28
31 | C D
200 000
52 34
56 41
109 94
118 106 | 57
61
123
134 | | 0
200 | 11
12
24
26
38
41 | 000 000
08 46
08 51
16 95
17 103
24 145
26 153 | 000
56
60
111
120
171
180 | 000
56
60
114
123
175
186 | A
000
11
12
23
26
38
41 | 8 0
000 00
10 4
12 5
24 10
27 10
37 15
40 16 | D 00 000
19 43
33 46
11 90
99 99
58 141
59 150 | 000
52
55
109
118
172
183 | A
000
10
11
21
24
35
40 | 8 0
000 00
08 4
09 5
19 10
21 1
31 14
34 13 | D 0000 000 0 000 0 000 0 000 0 000 0 000 0 | 000 0
44
50
101
110
164
175 | A B
000 0000
13 12
15 13
27 27
31 30
43 41
47 45 | C
000
57
3 62
7 119
0 129
1 183
3 193 | D E 000 00 49 53 6 12 116 12 166 15 177 20 | A 00 000 57 09 63 10 22 23 33 26 91 38 02 42 | 8
000 0
13
14
28
31
43
47 | C D
500 000
52 36
56 41
109 96
118 106
168 160
177 171 | 57
61
123
134
194
205 | | 0
200
400
600
800 | 11
12
24
26
38
41
52
55 | 000 000
08 46
08 51
16 95
17 103
24 145
26 153
33 197
35 201 | 000
56
60
111
120
171
180
227
236 | 000
56
60
114
123
175
186
238
249 | A
000
11
12
23
26
38
41
53
58 | 8 0
000 00
10 4
12 5
24 10
27 10
37 15
40 16
50 21
54 20 | D 00 000
19 43
33 46
01 90
99 99
98 141
59 150
18 190
30 201 | 000
52
55
109
118
172
183
238
251 | A
000
10
11
21
24
35
40
53 | 8 0
000 00
08 4
09 5
19 10
21 1
31 14
34 12
43 2
44 25 | D 0000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000 0
46
50
101
110
164
175
226 | A B
100 000
13 12
15 13
27 27
31 30
43 41
47 45
60 55 | C
000
2 57
3 62
7 119
1 183
1 193
5 244
1 254 | D E 000 00 49 53 6 12 116 12 127 20 225 22 235 22 | A 000 000 057 09 63 10 22 23 33 26 91 38 02 42 58 54 70 57 | 8
000 0
13
14
28
31
43
47
60 2
63 | C D
52 36
56 41
109 96
118 106
168 160
177 171
223 224
233 236 | 000
57
61
123
134
194
205
262
274 | | 0
200
400
600
900 | 11
12
24
26
38
41
52
55
66
69 | 000 000
08 46
08 51
16 90
17 100
24 145
26 150
33 197
35 201
41 241 | 000
56
60
111
120
171
180
227
236
284
295 | 000
56
60
114
123
175
186
238
249
299
311 | A
000
11
12
23
26
38
41
53
58
70
76 | 8 0
10 6
12 5
24 10
27 10
37 15
40 16
50 2
54 20
63 27 | D 00 000 000 000 000 000 000 000 000 00 | 000
52
55
109
118
172
183
238
251
302
320 | A
000
10
11
21
24
35
40
53
59
73
82 | 8 C
000 000 00
08 4
09 1
19 10
21 1
31 14
34 12
43 2
44 2:
54 2:
56 2! | D 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000 0
46
50
101
110
164
175
226
238
290
304 | A B
300 000
13 12
15 13
27 27
27 27
31 30
43 41
47 43
60 55
63 56
73 70
78 73 | C 000
2 57
3 62
7 119
0 129
1 183
3 193
5 244
1 254
0 304
3 316 | D E 000 00 49 53 6 126 126 127 225 225 225 2281 32 292 33 | A 000 000 000 000 000 000 000 000 000 0 | 8
000 0
13
14
28
31
43
47
60
63
76
80 | C D
500 000
52 36
56 41
109 96
118 106
168 160
177 171
223 224
233 236
278 287
268 298 | 000
57
61
123
134
194
205
262
274
329 | | 0
200
400
600
800
1000 | 11
12
24
26
38
41
52
55
66 | 000 000
08 44
08 51
16 95
17 103
24 143
26 153
33 197
35 201
41 244
43 250
50 290
60 337 | 000
56
60
111
120
171
180
227
236
284
295
339
350
391 | 000
56
60
114
123
175
186
238
249
299 | A
000
11
12
23
26
38
41
53
58
70 | 8 0
000 0
10 2
24 10
27 10
37 15
40 17
50 2
54 20
68 23
68 3
83 33
93 33 | D 00 000 000 000 000 000 000 000 000 00 | 000
52
55
109
118
172
183
238
251
302
369
366
434 | A
000
10
11
21
24
35
40
53
59
73
82
93
98
109 | 8 C
000 00
09 19 10
21 11
31 14 21
44 21
54 21
55 23
67 3
76 31 | D 0000 0000 088 38 38 38 38 38 38 38 38 38 38 38 38 3 | 000 0
46
50
101
110
164
175
228
290
304
305
367
417 | A B 000 0000 113 115 127 27 27 31 30 43 41 47 40 60 55 63 77 78 78 88 99 98 99 | C 1 000 1 57 3 62 7 119 1 183 3 193 5 244 1 254 3 316 5 366 3 376 7 424 | D E 000 00 49 116 1216 1216 1217 225 2235 2231 3346 44388 44 | A 000 0000 57 099 663 100 222 233 26 991 38 902 42 570 577 225 68 87 837 71 889 887 887 887 887 887 887 887 887 887 | 8
000 0
13
14
28
31
43
47
60
63
76
80
93
97 | C D
500 000
52 36
56 41
109 96
118 106
168 166
177 171
223 224
233 236
298
298
332 345
343
346 405 | 000
57
61
123
134
194
205
262
274
329
342
394
409 | | 0
200
400
600
800
1000
1200 | 11
12
24
26
38
41
52
55
66
69
79
82
93
105 | 000 000
08 44
08 51
16 99
17 103
24 144
26 153
33 197
35 201
41 245
43 255
50 290
53 295
60 337
62 346
69 346
60 346 | 000
56
60
111
120
171
180
236
284
285
339
350
391
402
443 | 000
56
60
114
123
175
186
238
249
299
311
358
370
416
428
474 | A
000
11
12
23
26
38
41
53
58
70
76
87
93
102
108
117 | 8 0
000 00
10 4
12 24 10
27 10
37 15
40 12
54 21
63 25
68 25
78 34
78 34
78 45
78 45 | D 00 000 000 019 43 53 46 011 90 99 99 99 141 159 159 159 159 150 201 179 238 25 251 11 289 340 341 355 544 392 | 000
52
55
109
118
172
183
238
251
302
329
386
434
451
498 | A
000
10
11
21
24
35
40
53
59
73
82
98
109
112
120 | 8 C 000 00 00 00 00 19 10 11 11 31 14 32 34 12 54 22 55 33 67 3 37 79 89 44 | D 00 000 00 00 00 00 00 00 00 00 00 00 0 | 000 0
46
50
101
110
164
175
226
238
290
304
353
367
417
430 1 | A B 8 100 000 113 12 15 13 27 27 27 31 34 47 43 447 45 63 55 63 73 73 73 86 85 90 98 99 99 90 114 | C 1 000 1 57 3 62 7 119 1183 3 193 3 193 3 196 3 376 3 376 3 376 3 376 4 483 | D E 000 00 49 153 6 106 11 116 15 177 225 25 235 27 281 336 33 346 44 388 44 440 5 | A 00 000 000 57 09 63 100 22 23 33 26 69 32 52 52 58 69 83 771 189 83 02 87 85 57 65 106 51 1 | 8 000 0
13 14 28 31 43 47 60 63 76 80 93 109 116 128 | C D
000 000
52 36
56 41
109 96
118 168 160
177 171
223 224
2278 297
238 298
332 344
343 356
401 443 461 |
000
57
61
123
134
194
205
205
262
274
329
342
394
409
479
533 | | 0
200
400
600
800
1000 | 11
12
24
26
38
41
52
55
66
69
79
82
93
105
108
117 | 000 000
08 44
08 5
16 97
17 103
24 144
26 153
33 193
41 24
43 25
50 290
53 293
60 34
69 38
71 38
80 43 | 000
56
60
111
120
171
180
227
236
295
339
350
391
403
443
454
472 | 000
56
60
114
123
175
186
238
249
279
311
358
370
416
428
474
486
530 | A 000 111 12 23 26 38 41 53 58 70 76 87 93 102 108 117 123 132 | 8 0
000 0
10 12
24 10
27 15
37 15
50 22
50 23
50 83
33 31
68 23
68 2 | D 00 000 000 000 000 000 000 000 000 00 | 000
52
55
109
118
172
183
238
251
302
369
386
434
451
498
515
560 | A 000 10 11 21 24 35 40 53 59 73 82 93 109 112 120 123 132 | 8 C 000 00 009 119 101 113 113 113 113 113 113 113 113 113 | D 00 000 0 000 0 000 0 000 0 000 0 0 0 | 000 0 46 50 101 110 1175 226 238 250 304 353 367 417 430 1 477 1 491 1 539 1 | A B 6000 0000 113 12 115 115 117 227 227 227 231 330 443 447 447 447 4560 55673 778 86 88 88 99 99 99 9102 103 114 117 123 127 123 127 | C 57 1000 1 57 119 119 119 119 119 119 119 119 119 11 | D E 000 00 49 53 6 1106 1116 11177 2025 225 225 235 2336 44 44 51 52 487 55 | A 00 000 057 09 059 059 059 059 059 059 059 059 059 | 8 000 0
13 14 28 31 43 47 60 63 76 80 93 97 109 116 128 136 146 | C D
500 000 000
52 36
56 41
109 96
118 106
168 160
177 171
171
172
173
173
173
173
173
173
173
173 | 000
57
61
123
134
194
205
262
274
329
342
394
409
452
479
5550
600 | | 0
200
400
600
900
1000
1200
1460 | 11
12
24
26
38
41
52
55
66
69
79
82
93
105
108 | 000 000
08 44
08 51
16 99
17 100
24 144
26 153
33 120
41 241
43 250
50 290
60 337
62 347
69 384
69 387
71 394 | 000
56
60
111
120
171
180
227
236
284
295
339
391
402
443
454
454
454
503
544 | 000
56
60
114
123
175
186
238
249
299
311
358
370
416
428
474
486 | A 000 11 12 23 26 38 41 53 58 70 76 87 93 102 108 117 123 | 8 0
000 000 110 12 12 124 10
224 10
237 15
40 12
50 21
50 21
50 21
63 22
68 33
68 33
68 34
1108 44 | D 00 000
19 43
33 46
33 46
39 99
98 141
59 150
18 190
20 199
20 20 199
20 20 199
20 30
20 40
20 40
2 | 000
52
55
109
118
172
183
238
251
302
320
369
434
451
498
515
560
577
623 | A
000
10
11
21
24
35
40
53
59
73
82
98
109
112
120
123 | 8 C 000 00 009 119 10 21 11: 34 12: 54 22: 54 23: 56 33: 657 39 44 492 44 492 44 | D 00 000 0 000 0 000 0 000 0 000 0 0 0 | 000 0 46 50 101 110 164 175 726 238 290 304 307 417 491 1491 1539 15598 11 5598 | A B 8 1000 0000 113 112 115 113 127 27 27 37 31 30 443 447 445 60 55 63 56 63 56 63 56 63 85 90 88 99 90 110 114 117 114 117 | C 57 57 119 7 119 1 183 3 193 3 193 3 193 3 3 4 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 | D E 0000 00 49 1106 1116 1116 11177 2025 2235 2225 23336 44388 4440 51 52 451 55 531 55 55 531 55 55 55 55 55 55 55 55 55 55 55 55 55 | A 00 000 000 000 000 000 000 000 000 | 8
000 0
13
14
28
31
43
47
60
63
76
80
93
93
97
97
109
116
128
136 | C D
000 0000
52 36
56 41
1009 96
118 106
168 160
168 160
168 160
17223 224
223 2278 287
287
287
287
287
287
287
287 | 000
57
61
123
134
194
205
262
27
329
342
394
409
453
479
533
550
669 | | 0
200
400
600
800
1000
1200
1460
1600 | 11
12
24
26
38
41
52
55
66
69
79
82
93
93
105
117
120
129
131 | 000 000
08 44
08 5
16 95
17 103
24 14
26 13
33 197
35 20
41 24
43 25
50 29
50 39
60 33
62 34
69 36
60 43
83 44
89 44
90 45 | 000
56
60
111
120
171
180
227
236
284
295
339
359
359
402
443
443
452
503
544
556 | 000
56
60
114
123
175
186
238
249
299
311
358
474
486
530
544
588 | A
000
11
12
23
26
38
41
53
58
70
76
87
93
102
108
117
123
137
147
151 | 8 0
000 0
10 12
12 10
27 10
37 12
50 22
50 22
50 22
63 22
78 33
68 22
78 34
108 44
1123 52
1130 52
1130 52
1146 55
oliter N | D 00 000 000 000 000 000 000 000 000 00 | 000
52
55
109
118
172
183
238
251
302
320
369
434
451
498
515
560
577
623 | A
000
10
11
21
24
35
40
53
59
73
82
93
109
112
120
123
134
143
147 | 8 C 0000 OC 2000 20 | D 00 000 0 000 0 000 0 000 0 000 0 000 0 | 000 0 46 50 101 110 164 175 726 238 290 304 307 417 491 1491 1539 15598 11 5598 | A B | C 000 1 000 1 1 1 1 1 1 | D E 000 00 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A 000 000 000 000 000 000 000 000 000 0 | 8
000 0
13
14
28
31
43
47
60
63
76
80
93
93
97
97
109
116
128
136 | C D 000 000 55 41 55 41 18 106 18 106 168 160 177 171 223 223 223 223 236 2332 344 335 353 3443 356 405 514 531 514 531 514 531 514 531 514 531 514 531 514 531 514 531 514 531 514 531 514 531 | 000
57
61
123
134
194
205
262
274
329
344
409
452
553
550
666
666 | | 0
200
400
800
1000
1200
1400
1800
2000
Test
Lond | 11
12
24
26
38
41
52
55
66
69
77
79
82
93
95
105
117
120
129
131
A | 000 000
08 44
08 5
16 99
17 10
24 144
26 153
33 199
35 201
41 241
43 297
50 297
50 297
60 339
60 33
71 399
80 43
83 447
94 487
94 487
96 487
97 487
98 60 000 000 | 0000 0 56 60 60 60 60 60 60 60 60 60 60 60 60 60 | 000
56
60
114
123
175
186
238
249
279
311
358
474
416
428
474
486
530
544
486
530
544
602 | A 0000 111 122 233 246 386 411 553 588 776 87 933 102 1037 147 151 151 P A 0000 | 8 0
000 00
10 12
24 10
27 10
37 13
40 10
50 2
54 22
63 22
63 22
63 23
63 23
63 23
63 23
63 23
63 23
63 23
63 23
64 44
1123 50
1130 50
1130 50
1146 57
1156 57 | D 000 000 000 000 000 000 000 000 000 0 | 000
52
55
109
118
172
183
238
172
230
369
451
498
515
560
577
623
642
E | A 0000 100 111 214 435 533 559 733 82 933 132 1334 1437 A 0000 | 8 C 000 00 00 00 00 00 00 00 00 00 00 00 | 0 000 (000 (000 (000 (000 (000 (000 (0 | 000 0 46
50 101
110 164
164 175
226 238
2290
304
477 1
491 1
559 1
559 1
5614 1 | A B 8 000 000 113 115 115 115 115 115 115 115 115 115 | C 000 | D E 000 00 49 1 106 12 116 12 12 12 22 23 23 23 23 33 6 34 33 34 6 34 33 34 6 44 0 5 5 14 9 5 5 11 6 5 5 12 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | A 000 000 000 000 000 000 000 000 000 0 | 8 000 (13 14 14 14 14 14 14 14 14 14 14 14 14 14 | C D 000 000 52 34 56 41 118 106 168 160 177 171 1212 223 224 223 224 223 224 223 244 43 456 443 456 443 456 557 61 No. 842 C D 000 000 | 000
57
57
123
134
129
205
262
239
329
342
349
452
409
452
409
452
409
452
409
462
409
462
409
462
409
466
619
619
619
619
619
619
619
619
619
6 | |
0
200
400
800
1000
1200
1400
1800
2000
Test
Load
0
200 | 11
12
24
26
38
41
52
55
66
69
77
82
93
105
108
117
120
131
14
000
13
14
10
10
10
10
10
10
10
10
10
10
10
10
10 | 000 000
08 44
08 51
16 99
17 102
24 144
26 153
33 192
33 192
33 292
41 249
43 250
50 299
50 299
50 393
60 333
64 333
64 344
69 366
69 366
69 366
69 366
60 39
60 30
60 | 0000 1 56 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 000
56
60
114
123
175
186
238
249
299
311
370
416
428
474
486
530
544
588
602 | A
0000
111
122
233
264
388
411
533
558
700
764
87
93
102
108
117
123
132
137
147
151 | 8 C C C C C C C C C C C C C C C C C C C | D 00 000 000 000 000 000 000 000 000 00 | 000
52
55
55
109
118
172
238
251
302
251
303
369
369
364
451
498
498
451
498
451
462
464
464
464
464
464
464
464
464
464 | A
0000
10
11
21
24
35
40
35
59
73
82
109
1123
132
134
143
144
147
A | 8 C 0000 00 | D D D D D D D D D D D D D D D D D D D | 000 0 46 50 101 110 110 110 110 110 1238 228 228 228 228 304 417 417 1491 1553 1477 1644 1 1 5599 1 1 5599 1 661 1 E | A B B B B B B B B B B B B B B B B B B B | C 1 000 1 00 | D E 6000 00 493 493 494 493 494 495 494 495 494 495 495 495 495 495 | A 0000 000 000 000 000 000 000 000 000 | 8 000 (13 14 14 14 14 14 14 14 14 14 14 14 14 14 | C D 000 000 52 34 56 41 118 106 168 160 177 171 1212 223 224 223 224 223 224 223 244 43 456 443 456 443 456 557 61 No. 842 C D 000 000 | 000
57
57
123
134
129
205
262
239
329
342
349
452
409
452
409
452
409
452
409
462
409
462
409
462
409
466
619
619
619
619
619
619
619
619
619
6 | | 0 2000 400 400 1200 1200 1200 1200 Cent Load 0 2000 400 400 | 111
122
244
248
388
411
525
555
666
69
779
823
105
117
1120
129
131
14
300
3248 | 000 000 000 08 44 090 17 100 124 144 226 157 333 197 50 297 50 297 50 297 50 297 60 332 171 399 488 C 000 000 000 114 5 54 30 100 32 119 45 170 000 000 330 100 332 119 45 170 000 000 000 330 100 332 119 45 170 000 000 000 000 330 100 332 119 45 170 000 000 000 000 000 000 000 000 000 | 0000 000 000 000 000 000 000 000 000 0 | 000
56
60
114
123
175
186
238
249
311
3370
416
4474
486
534
486
554
558
602
E
000
62
65
127
137
137
137
137
137
137
137
13 | A 0000 111 12 23 26 41 53 58 87 70 76 47 151 132 137 147 151 151 28 32 46 | 8 C C C C C C C C C C C C C C C C C C C | D D D D D D D D D D D D D D D D D D D | 0000
522
535
109
1118
1722
3208
2251
3202
3203
3364
4344
4496
5155
5500
5777
623
642
E
0000
575
643
1200
1311
1311
1311
1321
1321
1321
132 | A 0000 101 211 221 244 40 53 35 59 73 882 123 123 124 147 A 0000 13 14 27 29 94 41 | 8 C000 00 00 00 00 00 00 00 00 00 00 00 0 | D D D D D D D D D D D D D D D D D D D | 0000 0 46 46 1010 1010 1010 1010 1010 10 | A B B B B B B B B B B B B B B B B B B B | C 1 000 1 000 1 1 1 1 1 1 1 1 1 1 1 1 1 | D E 0000 00 00 00 00 00 00 00 00 00 00 00 | A 0000 000 000 000 000 000 000 000 000 | 8 000 (13 14 14 14 14 14 14 14 14 14 14 14 14 14 | C D D D D D D D D D D D D D D D D D D D | 000
57
61
123
134
129
1205
262
262
274
329
344
409
334
409
442
334
469
469
469
469
469
469
469
46 | | 0
200
400
800
1000
1200
1400
1800
2000
Test
Load
0
200 | 11 12 24 24 24 25 25 56 66 69 77 79 82 93 95 105 117 120 131 A 0000 13 4 8 52 | 000 000
08 44
08 51
16 92
17 104
26 152
33 192
33 292
40 234
41 255
50 297
50 297
50 297
60 333
44 234
64 333
44 9 384
64 333
44 99 4487
94 487
94 487
94 487
90 472
94 487
90 472
94 487
90 472
94 95
45 170
46 183
46 234
47 183
46 8 6 6 7 183
46 183
47 183
48 | 000 000 1 56 60 111 127 120 124 124 1 | 000
56
60
114
123
178
178
178
178
178
178
178
178 | A 0000 111 12 23 38 411 15 137 147 151 15 115 28 32 446 449 63 | 8 C 0000 00 112 124 1111 112 124 1111 112 124 1111 112 124 1111 112 124 1111 112 124 1111 112 124 1111 112 124 124 | D 0404 0513 0513 0513 0513 0513 0513 0513 0513 | 0000
522
555
5109
1188
2281
2302
2302
2303
3864
434
498
5155
500
577
633
1201
188
2201
2201
2201
2201
2201
2201 | A 0000 101 211 221 244 53 540 539 733 882 2132 1324 143 1447 A 0000 13 134 43 44 43 54 | 8 C 0000 00 00 00 00 00 00 00 00 00 00 00 | D 000 000 000 000 000 000 000 000 000 0 | 000 0 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A B B B B B B B B B B B B B B B B B B B | C 1 000 1 000 1 1 1 1 1 1 1 1 1 1 1 1 1 | D E 6 100 00 00 00 00 00 00 00 00 00 00 00 00 | A 000 000 000 000 000 000 000 000 000 0 | 8 000 (13 14 14 14 14 14 14 14 14 14 14 14 14 14 | C D D D D D D D D D D D D D D D D D D D | 000
57
61
123
134
129
1205
262
262
274
329
344
409
334
409
442
334
469
469
469
469
469
469
469
46 | | 0 2000 400 400 400 1200 1200 1200 1200 1 | 11 12 24 26 23 8 41 52 25 66 66 69 97 82 97 105 108 117 120 129 131 A 0000 13 144 52 67 2 | 000 000
08 44
08 51
16 99
17 104
24 144
26 153
33 199
33 201
41 255
50 299
60 334
69 384
69 384
69 384
71 394
48 83 447
90 431
81 15 53
30 108
30 108
30 108
49 183
60 231
64 244
67 247
67 | 0000 000 000 000 000 000 000 000 000 0 | 000
56
60
114
123
1186
238
249
249
249
249
249
249
474
474
486
530
544
486
602
E
000
62
65
65
66
67
67
67
67
67
67
67
67
67 | A 0000 111 12 23 38 411 32 68 32 46 49 63 68 82 | 8 C 0000 00 112 124 1111 112 124 1111 112 124 1111 112 124 1111 112 124 1111 112 124 1111 112 124 1111 112 124 124 | D 0 403 109 403 109 403 109 403 109 99 109 99 109 99 109
109 1 | 000
52
51
51
51
61
77
71
83
238
302
230
339
386
434
451
498
62
55
55
62
55
62
62
62
62
62
62
62
62
62
62
62
62
62 | A 0000 10 11 21 24 25 40 50 50 50 50 50 50 50 50 50 50 50 50 50 | 8 C 0000 00 00 00 00 00 00 00 00 00 00 00 | 0 000 (000 (000 (000 (000 (000 (000 (0 | 0000 0 46 0 101 1110 1110 1110 1110 1110 | A B B B B B B B B B B B B B B B B B B B | C 1 000 1 000 1 1 1 1 1 1 1 1 1 1 1 1 1 | D E 6 6 7 12 116 116 116 116 116 116 116 116 116 | A 000 000 000 000 000 000 000 000 000 0 | 8 000 (13 14 14 14 14 14 14 14 14 14 14 14 14 14 | C D D D D D D D D D D D D D D D D D D D | 000
57
61
123
134
129
1205
262
262
274
329
344
409
334
409
442
334
469
469
469
469
469
469
469
46 | | 0 2000 4000 4000 12000 12000 12000 12000 12000 12000 12000 12000 12000 4000 6000 6000 6000 | 11 12 24 24 24 25 25 56 66 69 77 79 82 93 95 105 117 120 131 A 0000 13 4 8 52 | 000 000
08 44
08 51
16 92
17 104
26 152
33 192
33 292
40 234
41 255
50 297
50 297
50 297
60 333
44 234
64 333
44 9 384
64 333
44 99 4487
94 487
94 487
94 487
90 472
94 487
90 472
94 487
90 472
94 95
45 170
46 183
46 234
47 183
46 8 6 6 7 183
46 183
47 183
48 | 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000
56
60
114
123
175
186
238
239
239
249
249
249
249
249
474
428
474
474
486
530
62
548
550
62
63
65
65
65
65
65
65
65
65
65
65 | A 0000 111 12 233 226 457 76 78 77 76 78 77 123 132 132 132 132 132 132 132 133 134 47 151 15 15 28 32 46 49 63 68 | 8 C 0000 0 12 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12 | CO DO | 000
52
55
55
109
118
127
183
228
183
228
309
369
369
451
451
451
451
555
560
577
623
642
862
862
862
862
862
862
862
862
862
86 | A 0000 111 214 35 54 55 59 77 77 29 9 112 120 134 147 P A 0000 13 144 55 66 66 75 77 | 8 C C C C C C C C C C C C C C C C C C C | D | 000 0 446 46 10 101 110 110 1246 1226 1229 1334 1417 1 14477 1 14477 1 1457 15599 1 15599 1 15599 1 15599 1 15599 1 1220 1220 1220 1220 1220 1220 1230 1230 | A B B B B B B B B B B B B B B B B B B B | C 5 57 51 55 52 54 55 55 55 55 55 55 55 55 55 55 55 55 | D E 6000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A 000 000 000 000 000 000 000 000 000 0 | 8 000 13 14 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 | C D D D D D D D D D D D D D D D D D D D | 000
57
61
123
134
129
1205
262
262
274
329
344
409
334
409
442
334
469
469
469
469
469
469
469
46 | | 0 2000 4000 4000 4000 1200 1200 1200 2000 4000 6000 10000 10000 | 11 12 24 26 38 44 552 555 66 69 779 82 933 105 108 1120 129 131 A 0000 134 52 657 286 91 103 107 1125 | 000 000
08 44
08 51
16 99
17 104
24 144
26 153
33 199
33 201
41 255
50 299
60 334
69 384
69 384
69 384
69 384
71 399
44 87
81 45
81 15
50 108
60 231
64 244
69 38
60 231
60 231
64 244
69 38
60 231
61 30
62 34
63 32
64 34
65 30
66 33
67 38
68 40
69 38
60 30
60 30
6 | 0 000 0 000 1 56 60 1 111 1 120 1 12 | 000
56
60
114
123
1175
1186
249
3370
3370
3416
428
444
448
455
450
450
465
474
474
474
474
474
474
474
47 | A 0000 111 12 23 26 38 41 15 1 15 1 15 1 15 1 15 1 15 1 15 1 | 8 CO000 07 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15 | ; D 0 000 000 000 000 000 000 000 000 00 | 000
52
109
118
118
1172
183
302
251
120
309
404
445
445
445
451
498
623
623
623
623
623
623
623
623
623
623 | A 0000 111 214 35 40 453 539 98 87 82 29 41 43 43 44 45 54 66 66 77 85 87 | 8 COO 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | D 000 000 000 000 000 000 000 000 000 0 | 000 0 0 46 0 101110 1101 1101 1101 1101 | A B B B B B B B B B B B B B B B B B B B | C 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | D E 6000 100 100 100 100 100 100 100 100 10 | A 000 000 000 000 000 000 000 000 000 0 | 8 000 13 14 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 | C D D 000 000 000 000 000 000 000 000 00 | 000 57 61 1234 1945 1232 1245 1245 1245 1245 1245 1245 1245 124 | | 0 2000 4000 6000 12000 1 | 111 122 244 388 411 522 555 666 699 793 1056 1177 1200 1314 302 448 522 665 72 869 1017 121 121 121 121 121 121 121 121 121 1 | 000 000 000 08 44 0 17 104 124 144 125 170 144 125 170 145 170 145 170 145 170 145 170 175 175 175 175 175 175 175 175 175 175 | 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
000
56
60
114
123
1186
123
1175
1186
1186
1187
1187
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
1188
11 | A 0000 111 122 233 246 449 449 446 449 1432 1447 1531 151 | 8 0000 07 12 12 12 12 12 12 12 12 12 12 12 12 12 | : D 0 000 000 000 000 000 000 000 000 00 | 000
52
109
118
1172
183
2251
230
220
330
230
230
336
443
498
451
498
451
550
550
550
57
57
227
229
220
220
220
220
220
220
220
220
220 | A 0000 111 224 435 440 533 82 23 132 443 1437 129 441 435 456 656 675 77 85 867 96 | 8 C000 00 00 00 00 00 00 00 00 00 00 00 0 | D D D D D D D D D D D D D D D D D D D | 000 0 46 50 101 110 110 110 110 110 110 110 110 | A B B B B B B B B B B B B B B B B B B B | C 1000 | D E 0000 0000 0000 0000 0000 0000 0000 | A 000 000 000 000 000 000 000 000 000 0 | 8 000 13 14 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 | C D D 000 000 000 000 000 000 000 000 00 | 000 57 61 1234 1945 1232 1245 1245 1245 1245 1245 1245 1245 124 | | 0 200 400 600 1200 1200 1200 1200 1200 1200 120 | 11 122 24 26 38 41 52 55 56 66 89 97 82 93 105 117 120 129 131 A 0000 13 144 52 65 72 86 91 107 119 125 139 | 000 000 000 08 44 09: 17 100: 17 100: 17 100: 17 100: 18 100: | 0 000 0 000 1 56 60 1 111 127 180 0 000 58 61 1127 180 1 127 1284 4434 4434 556 61 1127 127 1284 445 5553 | 000
56
60
114
123
186
249
299
291
358
402
444
486
602
62
63
127
139
64
65
127
139
139
139
140
140
140
140
140
140
140
140 | A 0000 111 12 23 34 45 35 87 973 127 127 127 127 127 127 127 127 127 127 | 8 CO000 07 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15 | : D 000 000 000 000 000 000 000 000 000 | 000
52
109
1183
251
302
251
302
251
303
364
434
451
451
515
560
577
623
642
120
131
188
200
207
249
247
249
251
251
251
251
251
251
251
251
251
251 | A 0000 110 1214 435 545 545 556 566 577 785 887 988 988 988 988 988 988 988 988 988 | 8 COO 00 00 00 00 00 00 00 00 00 00 00 00 0 | 0 000 000 000 000 000 000 000 000 000 | 000 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | A B B B B B B B B B B B B B B B B B B B | C 1000 10 10 10 10 10 10 10 10 10 10 10 1 | D E 0000 0 100 100 100 100 100 100 100 10 | A 000 000 000 000 000 000 000 000 000 0 | 8 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | C D 0 0000 0000 0000 0000 0000 0000 000 | 000 57 61 1234 1945 1232 1245 1245 1245 1245 1245 1245 1245 124 | Summary of Linear Regression Analysis for Parameters of D = A + BW for Pallets of Improved Design | Intercept
(1/1000 ln.) | Slope
(1/1000 ln./Lb.) | r | r ² | |---------------------------|---------------------------|------|----------------| | 46227 | -198 | 0.76 | 0.58 | D = Cumulative deflections (ABCDE) W = Weight of pallets Adjusted Values Based on Slope of Regression Line | Design | | | | | |--------------|-------|-------|-------|-------| | _ | а | b | C | d | | Conventional | 17010 | 16192 | 16185 | 14750 | | | 16817 | 16188 | 16269 | 16645 | | | 16778 | 17082 | 16672 | 16359 | | | 16940 | 15075 | 17372 | 17544 | | | 16229 | 14753 | 14391 | 16098 | | 1mproved | 12585 | 12841 | 13613 | 14605 | | | 14126 | 12553 | 14269 | 13363 | | | 12900 | 13573 | 13863 | 13982 | | | 14698 | 13660 | 14161 | 15697 | | | 13352 | 13514 | 13812 | 14002 | APPENDIX TABLE 21 Two-Factorial Analysis of Variance of Initial Stiffness Test Data for Pallets of Two Designs, Assembled with Four Different Nails ### a. for unadjusted values | Source of
Variation | Sum of
Squares | Degrees of
Freedom | Mean
Square | Computed
f | Critical
f | | |------------------------|-------------------|-----------------------|----------------|---------------|---------------|---| | Design | 39.86 E6 | 1 | 39.86 E6 | 60.58 | 4.15 | S | | Nail | 11.19 E6 | 3 | 3.73 E6 | 5.67 | 2.90 | Š | | Interaction | 10.60 E6 | 3 | 3.53 E6 | 5.36 | 2.90 | Š | | Error | 21.05 E6 | 32 | 0.66 E6 | | | | | Total | 82.70 E6 | 39 | | | | | ### b. for adjusted values | Source of
Variation | Sum of
Squares | Degrees of
Freedom | Mean
Square | Computed
f | Critical
f | | |------------------------|-------------------|-----------------------|----------------|---------------|---------------|----| | Design | 62.95 E6 | 7 | 62,95 E6 | 98.98 | 4.15 | S | | Nail | 3.25 E6 | 3 | 1.08 E6 | 1.70 | 2.90 | NS | | Interaction | 2,28 E6 | 3 | 0.76 E6 | 1.20 | 2.90 | NS | | Error | 20.35 E6 | 32 | 0.64 E6 | | | | | Total | 88.83 E6 | 39 | | | | | #### APPENDIX TABLE 22a ### Detailed Test Data for Free-Fall Drop Tests from 33½" Height of Conventional Stevedore Pallets | Pallet
Number | Test
Condition | Length
(a) | of Dia
(b) | gonals,
(c) | , in In.
(d) | Change
(a) | in Le | ength,
(c) | in In.
(d) | Average
Change | |------------------|---|--|---|---|---|--|--
--|--|--| | Aal | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 72.04
70.67
69.49
68.50
67.62 | 77.67
78.54
79.28 | 72.16
70.77
69.63
68.61 | 73,31
75,11
76,39
77,42
78,30
79,21
79,75 | 3.19
4.37
5.36 | 3.03
4.08 | 4.40
5.42
6.31 | 1.80
3.08
4.11
4.99
5.90
6.44 | 1.82
3.14
4.24
5.18
6.04
6.78 | | | Total Distortion Avg. Distortion | | | | | 9.63 | | 9.69
.20 | 8.78 | | | Aa2 | Prior to test
After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 71.61
70.31
69.25
68.23
67.22 | 73.80
75.49
76.67
77.61
78.48
79.32
80.02 | 73.45
71.56
70.21
69.11
68.11
67.11
66.21 | 73.69
75.41
76.61
77.55
78.41
79.23
79.95 | 3.08
4.14
5.16 | 2.87
3.81
4.68
5.52 | 1.89
3.24
4.34
5.34
6.34
7.24 | 2.92
3.86
4.72
5.54 | 1.77
3.03
4.04
4.98
5.89
6.68 | | | Total Distortion
Avg. Distortion | | | | | 9.55 | | 9.86
.09 | 8,50 | | | Aa3 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 71.70
70.44
69.30
68.26
67.40 | 75.54
76.70
77.71
78.59
79.31 | 73.51
71.78
70.50
69.40
68.39
67.50
66.55 | 73.74
75.37
76.53
77.51
78.38
79.12
79.86 | 3.01
4.15
5.19
6.05 | 2.81
3.82
4.70
5.42 | - | 2.79
3.77
4.64
5.38 | 1.69
2.91
3.96
4.91
5.72
6.56 | | | Total Distortion
Avg. Distortion | | | | | 9,50 | | 9.42
.90 | 8,30 | | | Aa4 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 69.18
68.10
67.08 | 75.40
76.68
77.70
78.62
79.48 | 73.52
71.78
70.37
69.21
68.15
67.14
66.29 | 73,71
75,37
76,63
77,66
78,54
79,40
80,10 | 1.75
3.12
4.29
5.37
6.39
7.29 | 1.63
2.91
3.93
4.85
5.71
6.40 | 3.15
4.31
5.37
6.38 | 1.66
2.92
3.95
4.83
5.69
6.39 | 1.70
3.03
4.12
5.11
6.04
6.83 | | | Total Distortion Avg. Distortion | | | | | 9.89 | | 9.83
.27 | 8.67 | | | Aa5 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 71.61
70.22
69.18
67.89
66.98
65.98 | 75.50
76.76
77.67
78.78
79.53
80.33 | 73.91
72.02
70.54
69.51
68.19
67.34
66.28 | 75.11
76.41
77.32
78.44
79.16 | 3.28
4.32
5.61
6.52
7.52 | 3.06
3.97
5.08
5.83
6.63 | 1.89
3.37
4.40
5.72
6.57
7.63 | 3.13
4.04
5.16
5.88
6.72 | 1.85
3.21
4.18
5.39
6.20
7.13 | | | Total Distortion Avg. Distortion | | | | | 10.23 | | 10,32
.68 | 9.17 | | ### Detailed Test Data for Free-Fail Drop Tests from $33\frac{1}{2}$ " Height of Conventional Stevedore Pallets | Pallet
Number | Test
Condition | Length of Dia | agonals, in I
(c) (d) | | | | Average
Change | |------------------|---|--|--|--|--|--------------------------------------|--| | Ab1 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 70.37 76.55
69.38 77.40
68.66 78.10 | 71.70 75.3
70.40 76.5
69.44 77.4
68.74 78.0
68.14 78.5 | 1.90
33 3.17
4.16
4.88
50 5.50 | 1.80 1.93
2.98 3.23
3.83 4.19
4.53 4.89
4.96 5.49
5.43 6.03 | 3.00
3.87
4.47
4.97 | 1.87
3.10
4.01
4.69
5.23
5.74 | | | Total Distortion Avg. Distortion | | | 8.21 | 7.38 8.19
7.80 | 7.41 | | | Ab2 | Prior to test
After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 70.47 76.57
69.60 77.34
68.85 77.99
68.26 78.50 | 71.66 75.4
70.39 76.6
69.49 77.3
68.73 78.0
68.15 78.5 | 15 1.86
3.11
39 3.98
34 4.73
34 5.32 | 1,78 1,91
2,91 3,18
3,68 4,08
4,33 4,84
4,84 5,42
5,30 6,00 | 2.96
3.75
4.39
4.90 | 1.84
3.04
3.87
4.57
5.12
5.64 | | | Total Distortion Avg. Distortion | | | 7.98 | 7.20 8.16
7.66 | 7.31 | | | Ab3 | Prior to test After &t Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 70.51 76.37
69.57 77.10
68.78 77.87
68.16 78.42 | 71.80 75.3
70.56 76.4
69.61 77.2
68.85 77.9
68.19 78.4 | 1.83
3.09
4.03
3.4.82
8.5.44 | 1.75 1.94
2.88 3.18
3.61 4.13
4.38 4.89
4.93 5.55
5.44 6.17 | 2.93
3.76
4.43
4.98 | 1.83
3.02
3.88
4.63
5.23
5.80 | | | Total Distortion Avg. Distortion | | | 8.25 | 7.40 8.37
7.88 | 7.48 | | | Ab4 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 70.34 76.69
69.44 77.48
68.70 78.10 | 70.46 76.7
69.58 77.5
68.81 78.1
68.14 78.7 | 54 2.12
72 3.43
50 4.33
17 5.07
74 5.74 | 1.92 2.03
3.11 3.32
3.90 4.20
4.52 4.97
5.10 5.64
5.58 6.26 | 3.13
3.91
4.58
5.15 | 2.01
3.25
4.09
4.79
5.41
5.95 | | | Total Distortion Avg. Distortion | | | 8 . 55 | 7.58 8.48
8.08 | 7.69 | | | Ab5 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 69.50 77.53
69.01 77.97
68.41 78.47
67.78 78.99 | 71.75 75.4
70.45 76.6
69.53 77.4
68.99 77.9
68.37 78.4 | 16 1.91
54 3.26
15 4.19
71 4.68
13 5.28
73 5.91 | 3.84 4.22
4.28 4.76
4.78 5.38
5.30 5.99 | 3.04
3.85
4.31
4.83
5.33 | 1.90
3.16
4.03
4.51
5.07
5.63 | | | Total Distortion Avg. Distortion | | | 8,02 | 7.19 8.12
7.64 | 2 /.24 | | ### APPENDIX TABLE 22c ### Detailed Test Data for Free-Fall Drop Tests from 33½" Height of Conventional Stevedore Pallets | Pallet
Number | Test
Condition | Length of Di
(a) (b) | egonals, in Ir
(c) (d) | n. Change in Length, in In. (a) (b) (c) (d) | Average
Change | |------------------|---|---|---|--|--| | Ac1 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 72.34 74.81
71.66 75.47
71.26 75.83
70.90 76.10
70.60 76.42 | 71.82 75.30
71.46 75.66
71.08 76.00
70.80 76.24 | 2 1.24 1.17 1.24 1.16
0 1.92 1.83 1.96 1.84
5 2.32 2.19 2.32 2.20
0 2.68 2.50 2.70 2.54
4 2.98 2.78 2.98 2.78 | 1.20
1.89
2.26
2.61
2.88
3.17 | | | Total Distortion Avg. Distortion | | | 4.46 4.16 4.45 4.15
4.31 | | | Ac2 | Prior to fest
After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 72.57 74.71
71.98 75.30
71.50 75.71
71.21 76.00
70.97 76.22 | 71.91 75.26
71.46 75.65
71.18 75.9
70.90 76.18 | 7 1.22 1.14 1.20 1.17
5 1.81 1.73 1.82 1.76
5 2.29 2.14 2.27 2.15
3 2.58 2.43 2.55 2.43
3 2.82 2.65 2.83 2.68 | 1.18
1.78
2.21
2.50
2.75
2.99 | | | Total Distortion
Avg. Distortion | | | 4.19 3.93 4.18 3.95
4.06 | | | Ac3 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 72.25 75.06
71.55 75.77
71.07 76.23
70.68 76.60
70.23 77.00 | 71.50 75.59
71.00 76.02
70.63 76.37
70.17 76.80 | 7 1.22 1.13 1.17 1.14
7 1.92 1.84 1.93 1.84
2 2.40 2.30 2.43 2.27
7 2.79 2.67 2.80 2.62
0 3.24 3.07 3.26 3.05 | 1.17
1.91
2.35
2.72
3.16
3.38 | | | Total Distortion
Avg. Distortion | | | 4.75 4.46 4.75 4.41
4.59 | | | Ac4 | Prior to test
After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 71.74 75.59
71.12 76.14
70.80 76.44
70.43 76.77 | 72.36 74.50
71.61 75.19
71.00 75.75
70.67 76.06
70.29 76.40 | 1.12 1.14 1.13 1.10
1.86 1.85 1.88 1.79
2.48 2.40 2.49 2.35
2.80 2.70 2.82 2.66
3.17 3.03 3.20 3.00 | 1.12
1.85
2.43
2.75
3.10
3.28 | | | Total Distortion Avg. Distortion | | | 4.57 4.33 4.61 4.33
4.46 | | | Ac5 | Prior to test
After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 71.95 75.10
71.24 75.78
70.66 76.30
70.21 76.72
69.79 77.10 | 72.29 75.00
71.58 75.66
70.99 76.20
70.53 76.61
70.11 76.97 | 1,27 1,21 1,24 1,21
1,98 1,89 1,95 1,87
2,56 2,41 2,54 2,41
3,01 2,83 3,00 2,82
3,43 3,21 3,42 3,18
3,85 3,59 3,84 3,55 | 1.23
1.92
2.48
2.92
3.31
3.71 | | | Total Distortion Avg. Distortion | | | 5.26 4.86 5.22 4.81
5.04 | | #### APPENDIX TABLE 22d # Detailed Test Data for Free-Fall Drop Tests from $33\frac{1}{2}"$ Height of. Conventional Stevedore Pallets | Ad1 Prior to test 73,37 73,84 73,37 73,89 | Pailet
Number | Test
Condition | Length of Di | agonals, in In. (c) (d) | Change in Length, in In. (a) (b) (c) (d) |
Average
Change | |--|------------------|--|--|---|--|------------------------------| | Avg. Distortion, in Percent: Ad2 Prior to test 73,58 73,70 73,45 73,51 After 1st Drop 72,21 75,00 72,11 74,81 1,37 1,30 1,34 1,30 1,33 After 2nd Drop 71,35 75,80 71,24 75,62 2,23 2,10 2,21 2,11 2,16 After 3rd Drop 70,79 76,31 70,67 76,13 2,79 2,61 2,78 2,62 2,70 After 4th Drop 70,34 76,72 70,22 76,55 3,24 3,02 3,23 3,04 3,13 After 5th Drop 70,99 76,93 69,98 76,76 3,49 3,23 3,47 3,25 3,36 After 6th Drop 69,89 77,12 69,75 76,97 3,69 3,42 3,70 3,46 3,57 Total Distortion, in Percent: Avg. Distortion, in Percent: Avg. Distortion, in Percent: After 2nd Drop 71,60 75,66 71,68 75,46 2,19 2,09 2,17 2,10 2,14 After 3rd Drop 70,96 76,25 71,04 76,05 2,83 2,68 2,81 2,69 2,75 After 6th Drop 69,37 77,67 69,48 77,46 4,42 4,10 4,37 4,10 4,25 Total Distortion, in Percent: Avg. After 3rd Drop 70,50 75,61 71,52 75,46 1,93 1,83 1,92 1,85 1,88 4,74 2nd Drop 71,50 75,61 71,52 75,46 1,93 1,83 1,92 1,85 1,88 4,74 2nd Drop 71,50 75,61 71,52 75,46 1,93 1,83 1,92 1,85 1,88 4,74 2nd Drop 70,35 76,70 70,39 76,49 3,08 2,92 3,05 2,88 2,98 4,74 2nd Drop 70,35 76,70 70,39 76,49 3,08 2,92 3,05 2,88 2,98 4,74 2nd Drop 70,35 76,70 70,39 76,49 3,08 2,92 3,05 2,88 2,98 2,88 4,74 2,00 2,75 4,74 2,75 2,75 2,75 2,75 2,75 2,75 2,75 2,75 | Adl | After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop | 72.13 75.02
71.37 75.73
70.89 76.16
70.58 76.46
70.19 76.80 | 72.11 75.06
71.36 75.80
70.89 76.22
70.56 76.51
70.19 76.86 | 2.00 1.89 2.01 1.91
2.48 2.32 2.48 2.33
2.79 2.62 2.81 2.62
3.18 2.96 3.18 2.97 | 1.95
2.40
2.71
3.07 | | After 1st Drop 72.21 75.00 72.11 74.81 1.37 1.30 1.34 1.30 1.33 After 2nd Drop 71.35 75.80 71.24 75.62 2.23 2.10 2.21 2.11 2.16 After 3rd Drop 70.79 76.31 70.67 76.13 2.79 2.61 2.78 2.62 2.70 After 4th Drop 70.34 76.72 70.22 76.55 3.24 3.02 3.23 3.04 3.13 After 5th Drop 70.09 76.93 69.98 76.76 3.49 3.23 3.47 3.25 3.36 After 6th Drop 69.89 77.12 69.75 76.97 3.69 3.42 3.70 3.46 3.57 Total Dis tortion, in Percent: Ad3 Prior to test 73.79 73.57 73.85 73.36 After 1st Drop 72.45 74.84 72.54 74.64 1.34 1.27 1.31 1.28 1.29 After 2nd Drop 71.60 75.66 71.68 75.46 2.19 2.09 2.17 2.10 2.14 After 3rd Drop 70.33 76.83 70.46 76.59 3.46 3.26 3.39 3.23 3.34 After 5th Drop 69.79 77.30 69.91 77.07 4.00 3.73 3.94 3.71 3.85 After 6th Drop 69.79 77.30 69.91 77.07 4.00 3.73 3.94 3.71 3.85 After 1st Drop 69.79 77.30 69.91 77.07 4.00 3.73 3.94 3.71 3.85 After 6th Drop 69.79 77.50 72.18 74.82 7.57 After 1st Drop 72.17 75.00 72.18 74.82 7.57 After 3rd Drop 71.50 75.61 71.52 75.46 1.93 1.83 1.92 1.85 1.88 After 3rd Drop 70.35 76.50 70.60 76.30 2.88 2.72 2.84 2.69 2.78 After 6th Drop 70.35 76.50 70.60 76.30 2.88 2.72 2.84 2.69 2.78 After 6th Drop 70.35 76.50 70.60 76.30 2.88 2.72 2.84 2.69 2.78 After 6th Drop 70.09 76.94 70.14 76.70 3.34 3.16 3.30 3.09 3.22 Total Distortion, in Percent: Ad5 Prior to test 73.31 73.84 73.45 73.80 After 6th Drop 70.09 76.94 70.14 76.70 3.34 3.16 3.30 3.09 3.22 Total Distortion, in Percent: Ad5 Prior to test 73.31 73.84 73.45 73.80 After 6th Drop 70.09 76.94 70.14 76.70 3.34 3.16 3.30 3.09 3.22 Total Distortion, in Percent: Ad5 Prior to test 73.31 73.84 73.45 73.80 After 5th Drop 70.15 76.80 70.27 76.17 2.02 1.90 2.03 1.91 1.97 After 2nd Drop 71.29 75.74 71.42 75.71 2.02 1.90 2.03 1.91 1.97 After 3rd Drop 70.15 76.80 70.27 76.17 3.16 2.96 3.18 2.97 3.07 | | | | | | | | Avg. Distortion, in Percent: Ad3 Prior to test After 1st Drop After 2nd Drop After 2nd Drop After 4th Drop After 5th Drop Avg. Distortion, in Percent: After 3nd Drop After 4th Drop After 1st Drop After 1st Drop After 5th Drop After 5th Drop After 5th Drop Avg. Distortion, in Percent: After 3nd Drop After 3nd Drop After 4th Drop After 5th Drop After 4th Drop After 5th Drop After 6th Drop After 5th Drop After 6th 70.09 After 70.09 After 6th Drop After 70.09 After 70.09 After 6.00 After 1st Drop After 70.09 After 70.09 After 70.00 70.0 | Ad2 | After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop | 72.21 75.00
71.35 75.80
70.79 76.31
70.34 76.72
70.09 76.93 | 72.11 74.81
71.24 75.62
70.67 76.13
70.22 76.55
69.98 76.76 | 2.23 2.10 2.21 2.11
2.79 2.61 2.78 2.62
3.24 3.02 3.23 3.04
3.49 3.23 3.47 3.25 | 2.16
2.70
3.13
3.36 | | After 1st Drop 72.45 74.84 72.54 74.64 1.34 1.27 1.31 1.28 1.29 After 2nd Drop 70.96 75.66 71.68 75.46 2.19 2.09 2.17 2.10 2.14 After 3rd Drop 70.96 76.25 71.04 76.05 2.83 2.68 2.81 2.69 2.75 After 4th Drop 70.33 76.83 70.46 76.59 3.46 3.26 3.39 3.23 3.34 After 5th Drop 69.79 77.30 69.91 77.07 4.00 3.73 3.94 3.71 3.85 After 6th Drop 69.79 77.67 69.48 77.46 4.42 4.10 4.37 4.10 4.25 Total Distortion, in Percent: Avg. Distortion, in Percent: After 1st Drop 72.17 75.00 72.18 74.82 7.77 After 3rd Drop 71.00 76.10 71.02 75.91 2.43 2.32 2.42 2.30 2.37 After 4th Drop 70.35 76.70 70.39 76.49 3.08 2.92 3.05 2.88 2.98 After 5th Drop 70.09 76.94 70.14 76.70 3.34 3.16 3.30 3.09 3.22 Total Distortion, in Percent: Avg. | | | | : | | | | Avg. Distortion, in Percent: Ad4 Prior to test 73.43 73.78 73.44 73.61 After 1st Drop 72.17 75.00 72.18 74.82 1.26 1.22 1.26 1.21 1.24 After 2nd Drop 71.50 75.61 71.52 75.46 1.93 1.83 1.92 1.85 1.88 After 3rd Drop 71.00 76.10 71.02 75.91 2.43 2.32 2.42 2.30 2.37 After 4th Drop 70.55 76.50 70.60 76.30 2.88 2.72 2.84 2.69 2.78 After 5th Drop 70.35 76.70 70.39 76.49 3.08 2.92 3.05 2.88 2.98 After 6th Drop 70.09 76.94 70.14 76.70 3.34 3.16 3.30 3.09 3.22 Total Distortion, in Percent: Avg. Distortion, in Percent: 4.55 4.28 4.49 4.20 4.38 Ad5 Prior to test 73.31 73.84 73.45 73.80 After 1st Drop 72.11 75.00 72.23 74.98 1.20 1.16 1.22 1.18 1.19 After 2nd Drop 71.29 75.74 71.42 75.71 2.02 1.90 2.03 1.91 1.97 After 3rd Drop 70.80 76.20 70.92 76.19 2.51 2.36 2.53 2.39 2.45 After 4th Drop 70.51 76.48 70.62 76.43 2.80 2.64 2.82 2.63 2.73 After 5th Drop 70.15 76.80 70.27 76.77 3.16 2.96 3.18 2.97 3.07 | Ad3 | After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop | 72.45 74.84
71.60 75.66
70.96 76.25
70.33 76.83
69.79 77.30 | 72.54 74.64
71.68 75.46
71.04 76.05
70.46 76.59
69.91 77.07 | 2.19 2.09 2.17 2.10
2.83 2.68 2.81 2.69
3.46 3.26 3.39 3.23
4.00 3.73 3.94 3.71 | 2.14
2.75
3.34
3.85 | | After 1st Drop 72.17 75.00 72.18 74.82 1.26 1.22 1.26 1.21 1.24 After 2nd Drop 71.50 75.61 71.52 75.46 1.93 1.83 1.92 1.85 1.88 After 3rd Drop 71.00 76.10 71.02 75.91 2.43 2.32 2.42 2.30 2.37 After 4th Drop 70.55 76.50 70.60 76.30 2.88 2.72 2.84 2.69 2.78 After 5th Drop 70.35 76.70 70.39 76.49 3.08 2.92 3.05 2.88 2.98 After 6th Drop 70.09 76.94 70.14 76.70 3.34 3.16 3.30 3.09 3.22 Total Distortion, in Percent: Avg. Distortion, in Percent: 4.55 4.28 4.49 4.20 4.38 Ad5 Prior to test 73.31 73.84 73.45 73.80 4.38 After 1st Drop 72.11 75.00 72.23 74.98 1.20 1.16 1.22 1.18 1.19 After 2nd Drop 71.29 75.74 71.42 75.71 2.02 1.90 2.03 1.91 1.97 After 3rd Drop 70.80 76.20 70.92 76.19 2.51 2.36 2.53 2.39 2.45 After 4th Drop 70.51 76.48 70.62 76.43 2.80 2.64 2.82 2.63 2.73 After 5th Drop 70.15 76.80 70.27 76.77 3.16 2.96 3.18 2.97 3.07 | | | | | | | | Avg. Distortion, in Percent: Avg. Distortion, in Percent: 4.38 Ad5 Prior to test 73.31 73.84 73.45 73.80 — — — — — — — — — — — — — — — — — — — | Ad4 | After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop | 72.17 75.00
71.50 75.61
71.00
76.10
70.55 76.50
70.35 76.70 | 72.18 74.82
71.52 75.46
71.02 75.91
70.60 76.30
70.39 76.49 | 1.93 1.83 1.92 1.85
2.43 2.32 2.42 2.30
2.88 2.72 2.84 2.69
3.08 2.92 3.05 2.88 | 1.88
2.37
2.78
2.98 | | After 1st Drop 72.11 75.00 72.23 74.98 1.20 1.16 1.22 1.18 1.19 After 2nd Drop 71.29 75.74 71.42 75.71 2.02 1.90 2.03 1.91 1.97 After 3rd Drop 70.80 76.20 70.92 76.19 2.51 2.36 2.53 2.39 2.45 After 4th Drop 70.51 76.48 70.62 76.43 2.80 2.64 2.82 2.63 2.73 After 5th Drop 70.15 76.80 70.27 76.77 3.16 2.96 3.18 2.97 3.07 | | | | | | | | Total Distortion, in Percent: 4.62 4.28 4.64 4.31 Avg. Distortion, in Percent: 4.46 | Ad5 | After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop
Total Distortion | 72.11 75.00
71.29 75.74
70.80 76.20
70.51 76.48
70.15 76.80
69.92 77.00
n, in Percent: | 72.23 74.98
71.42 75.71
70.92 76.19
70.62 76.43
70.27 76.77 | 2.02 1.90 2.03 1.91
2.51 2.36 2.53 2.39
2.80 2.64 2.82 2.63
3.16 2.96 3.18 2.97
3.39 3.16 3.41 3.18
4.62 4.28 4.64 4.31 | 1.97
2.45
2.73
3.07 | APPENDIX TABLE 22e ### Detailed Test Data for Free-Fall Drop Tests from 33½" Height of Improved Stevedore Pallets | Pailet
Number | Test
Condition | Length of Dia | agonals, in In.
(c) (d) | Change in Length, in In. (a) (b) (c) (d) | Average
Change | |------------------|---|--|--|--|--| | 8a1 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 71.82 75.41
70.63 76.38
69.65 77.23
68.66 78.10
67.85 78.80 | 69.74 77.34
68.75 78.19
67.90 78.91 | 1.47 1.50 1.50 1.41
2.66 2.47 2.69 2.49
3.64 3.32 3.68 3.36
4.63 4.19 4.67 4.21
5.44 4.89 5.52 4.93
6.33 5.62 6.21 5.62 | 1.47
2.58
3.50
4.43
5.20
5.95 | | | Total Distortion Avg. Distortion | , in Percent:
, in Percent: | | 8.64 7.60 8.46 7.60
8.08 | | | Ba2 | After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 71.87 75.13
70.78 76.14
69.79 77.05
68.91 77.81
68.10 78.52 | 68.96 77.93
68.14 78.64 | 1.44 1.38 1.52 1.40
2.53 2.39 2.62 2.41
3.52 3.30 3.62 3.32
4.40 4.06 4.51 4.09
5.21 4.77 5.33 4.80
5.98 5.42 6.10 5.44 | 1.44
2.49
3.44
4.27
5.03
5.74 | | | Total Distortion
Avg. Distortion | | | 8.16 7.35 8.30 7.37
7.80 | | | 8 a 3 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 71.78 75.36
70.64 76.43
69.63 77.33
68.72 78.13
67.92 78.81 | 70.64 76.34
69.72 77.26
68.80 78.05
68.01 78.73 | 1.63 1.50 1.61 1.53
2.77 2.57 2.74 2.57
3.78 3.47 3.76 3.49
4.69 4.27 4.68 4.28
5.49 4.95 5.47 4.96
6.27 5.60 6.23 5.62 | 1.57
2.66
3.63
4.48
5.22
5.93 | | | Total Distortion Avg. Distortion | | | 8.54 7.58 8.48 7.62
8.06 | | | Ba4 | Prior to test
After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 71.98 75.14
70.93 76.12
69.94 77.00
69.07 77.77
68.29 78.45 | 70.10 76.97
69.23 77.73
68.46 78.40 | 1.47 1.42 1.48 1.42
2.52 2.40 2.56 2.42
3.51 3.28 3.53 3.30
4.38 4.05 4.40 4.06
5.16 4.73 5.17 4.73
5.83 5.29 5.85 5.30 | 1.45
2.48
3.41
4.22
4.95
5.57 | | | Total Distortion
Avg. Distortion | | | 7.94 7.18 7.95 7.19
7.57 | | | Ba5 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 71.80 75.41
70.67 76.45
69.87 77.17
68.97 77.97
68.27 78.56
67.56 79.16 | 69.83 77.23
68.94 78.01
68.25 78.60 | 1.52 1.46 1.58 1.48
2.65 2.65 2.73 2.52
3.45 3.22 3.55 3.26
4.35 4.02 4.44 4.04
5.05 4.61 5.13 4.63
5.76 5.21 5.83 5.21 | 1.51
2.60
3.37
4.21
4.86
5.50 | | | Total Distortion Avg. Distortion, | | | 7.86 7.05 7.94 7.04
7.47 | | ### APPENDIX TABLE 22f ## Detailed Test Data for Free-Fall Drop Tests from $33\frac{1}{2}$ Height of Improved Stevedore Pallets | Pallet
Number | Test
Condition | Length of Dia | agonals, in In. (c) (d) | Change in Length, in In. (a) (b) (c) (d) | Average
Change | |------------------|---|--|--|--|--| | Bb1 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 70.66 76.46
69.84 77.10
69.35 77.52
68.97 77.90 | | 1.41 1.32 1.49 1.38
2.54 2.46 2.60 2.42
3.36 3.10 3.40 3.15
3.85 3.52 3.87 3.55
4.23 3.90 4.29 3.92
4.69 4.26 4.72 4.31 | 1.40
2.51
3.25
3.70
4.09
4.50 | | | Total Distortion Avg. Distortion | | | 6.41 5.76 6.40 5.84
6.10 | | | 8b2 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 72.03 73.15
71.17 75.96
70.17 76.86
69.36 77.57
68.78 78.08 | | 1.63 1.55 1.65 1.57
2.49 2.38 2.60 2.44
3.49 3.28 3.55 3.31
4.30 3.99 4.33 3.99
4.88 4.50 4.93 4.51
5.44 5.00 5.49 5.00 | 1.60
2.48
3.41
4.15
4.71
5.23 | | | Total Distortion
Avg. Distortion | | | 7.39 6.80 7.43 6.80
7.11 | | | вь3 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th D op After 6th Drop | 70.02 77.03
69.39 77.59
68.85 78.06 | 71.98 75.21
70.92 76.20
70.18 76.85 | 1.50 1.42 1.48 1.47
2.59 2.42 2.54 2.46
3.32 3.06 3.28 3.11
3.95 3.62 3.92 3.69
4.49 4.09 4.44 4.16
4.95 4.51 4.91 4.56 | 1.47
2.50
3.19
3.80
4.30
4.73 | | | Total Distortion
Avg. Distortion | | | 6.75 6.10 6.68 6.18
6.43 | | | 8b 4 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 71.16 75.91
70.43 76.58
69.87 77.08
69.35 73.53 | 72,26 74,72
71,22 75,71
70,47 76,40
69,91 76,90 | 1,45 1,41 1,55 1,46
2,51 2,38 2,59 2,45
3,24 3,05 3,34 3,14
3,80 3,55 3,90 3,64
4,32 4,00 4,40 4,07
4,74 4,37 4,83 4,45 | 1.47
2.48
3.19
3.72
4.20
4.60 | | | Total Distortion
Avg. Distortion | , in Percent:
, in Percent: | | 6.43 5.94 6.54 6.07
6.25 | | | Bb5 | Prior to test
After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 71,98 75,12
71,01 76,02
70,17 76,87
69,53 77,35
69,01 77,80
68,49 78,25 | 70.29 76.69 | 1.75 1.69 1.74 1.68
2.72 2.59 2.73 2.61
3.56 3.35 3.58 3.38
4.20 3.92 4.22 3.95
4.72 4.37 4.74 4.42
5.24 4.82 5.26 4.86 | 1.72
2.66
3.47
4.07
4.56
5.05 | | | Total Distortion Avg. Distortion, | | | 7.11 6.56 7.12 6.63
6.86 | | ### APPENDIX TABLE 22g ### Detailed Test Data for Free-Fall Drop Tests from 33½" Height of Improved Stevedore Pallets | Pallet
Number | Test
Condition | Length of Diagonals, in In. (a) (b) (c) (d) | Change in Length, in In. (a) (b) (c) (d) | Average
Change | |------------------|---|---|--|--| | Bc i | After 3rd Drop
After 4th Drop
After 5th Drop | 71.90 75.23 72.18 75.10
71.58 75.54 71.82 75.40
71.48 75.59 71.76 75.48
71.17 75.90 71.46 75.77 | 0.91 0.98 0.86 0,86 f.41 1.39 1.37 1.34 1.73 1.70 1.73 1.64 1.83 1.75 1.79 1.72 2.14 2.06 2.09 2.01 2.21 2.12 2.22 2.10 | 0.90
1.38
1.70
1.77
2.08
2.16 | | | Total Distortion Avg. Distortion | | 3.01 2. 87 3.02 2.85 2.94 | •. | | Bc2 | After 2nd Drop
After 3rd Drop
After 4th Drop | 73.32 73.65 73.61 73.69
72.49 74.46 72.75 74.49
72.03 74.87 72.31 74.93
71.64 75.23 71.93 75.29
71.38 75.49 71.64 75.53
71.16 75.68 71.45 75.73
71.00 75.84 71.28 75.90 | 0.83 0.81 0.86 0.80
1.29 1.22 1.30 1.24
1.68 1.58 1.68 1.60
1.94 1.84 1.97 1.84
2.16 2.03 2.16 2.04
2.32 2.19 2.33 2.21 | 0.83
1.26
1.64
1.98
2.10
2.26 | | | Total Distortion
Avg. Distortion | | 3.16 2,97 3.17 3.00
3.08 | | | Bc3 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 72.17 75.01 72.21 75.04
71.81 75.45 7.182 75.40
71.51 75.71 71.53 75.67
71.27 75.95 71.29 75.90 | 0.95 0.90 0.93 0.91
1.52 1.36 1.51 1.47
1.88 1.80 1.90 1.82
2.18 2.06 2.19 2.09
2.42 2.30 2.43 2.32
2.60 2.47 2.59 2.46 | 0.92
1.46
1.85
2.13
2.37
2.53 | | | Total Distortion Avg. Distortion | | 3,53 3,35 3,51 3,34
3,43 | | | Bc4 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 71.98 75.26 72.26 75.00
71.65 75.56 71.92 75.29
71.36 75.82 71.62 75.58 | 0.83 0.82 0.87 0.86
1.37 1.33 1.41 1.38
1.70 1.63 1.75 1.68
1.99 1.89 2.05
1.97
2.22 2.11 2.26 2.19
2.40 2.27 2.46 2.36 | 0.85
1.38
1.69
1.98
2.20
2.37 | | | Total Distortion Avg. Distortion | | 3,27 3,07 3,34 3,21
3,22 | | | Bc5 | After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 71.77 75.23 71.87 75.14
71.35 75.61 71.46 75.52
70.95 76.00 71.08 75.89
70.69 76.23 70.83 76.12
70.50 76.40 70.64 76.28 | 0.94 0.94 0.96 0.91
1.52 1.47 1.56 1.46
1.94 1.85 1.97 1.84
2.34 2.24 2.36 2.21
2.60 2.47 2.60 2.44
2.79 2.64 2.79 2.60 | 0.94
1.50
1.90
2.29
2.53
2.71 | | | Total Distortion Avg. Distortion | | 3.81 3.58 3.80 3.52
3.68 | | ### APPENDIX TABLE 22h ## Detailed Test Data for Free-Fall Drop Tests from $33\frac{1}{2}$ Height of Improved Stevedore Pallets | Pallet
Number | Test
Condition | Length of Dic | gonals, in In.
(c) (d) | Change in Length, in In. (a) (b) (c) (d) | Average
Change | |------------------|--|---|---|--|--| | Bd1 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 72.36 74.86
71.67 75.50
71.26 75.87
70.95 76.16
70.67 76.43 | 71.72 75.35 | 0.98 0.94 1.02 0.95
1.67 1.58 1.72 1.60
20.8 1.95 2.74 1.99
2.39 2.24 2.44 2.27
2.67 2.51 2.72 2.54
2.86 2.68 2.92 2.72 | 0.97
1.64
2.04
2.34
2.61
2.80 | | | Total Distortion Avg. Distortion | | | 3.90 3.63 3.98 3.59
3.77 | | | Bd2 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 72.69 74.33
72.01 74.98
71.63 75.34
71.43 75.54
71.14 75.80 | 73.84 73.40
72.84 74.33
72.16 75.00
71.74 75.39
71.55 75.58
71.26 75.84
71.08 76.00 | 0.99 0.95 1.00 0.93
1.67 1.60 1.68 1.60
2.05 1.96 2.10 1.99
2.25 2.16 2.29 2.18
2.54 2.42 2.58 2.44
2.71 2.59 2.76 2.60 | 0.97
1.64
2.03
2.22
2.50
2.67 | | | Total Distortion
Avg. Distortion | | | 3.68 3.53 3.74 3.54
3.62 | | | Bd3 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 72.87 74.35
72.27 74.90
71.89 75.28
71.53 75.60
71.28 75.84 | 73.77 73.47
72.84 74.39
72.45 84.93
71.86 75.30
71.52 75.63
71.25 75.90
71.05 76.06 | 0.94 0.91 0.93 0.92
1.54 1.46 1.32 1.46
1.92 1.84 1.91 1.83
2.28 2.16 2.25 2.16
2.53 2.40 2.52 2.43
2.73 2.58 2.72 2.59 | 0.93
1.45
1.88
2.28
2.47
2.66 | | | Total Distortion
Avg. Distortion | | | 3.70 3.51 3.69 3.53
3.61 | | | Bd4 | After 1st Drop
After 2nd Drop
After 3rd Drop
After 4th Drop
After 5th Drop
After 6th Drop | 71.66 75.39
71.40 75.63 | 71.39 75.70
71.06 76.02 | 1.08 1.02 1.04 1.01
1.81 1.72 1.77 1.72
2.19 2.07 2.15 2.08
2.45 2.31 2.41 2.31
2.80 2.61 2.74 2.63
2.89 2.70 2.85 2.72 | 1.04
1.76
2.12
2.37
2.70
2.79 | | | Total Distortion Avg. Distortion | | | 3.91 3.68 3.86 3.71
3.79 | | | Bd5 | Prior to test After 1st Drop After 2nd Drop After 3rd Drop After 4th Drop After 5th Drop After 6th Drop | 72.42 74.90
71.80 75.49
71.41 75.83
71.15 76.09 | 71.62 75.76
71.35 76.00
71.14 76.19 | 0,99 0.95 0.99 0.97
1,61 1.54 1.61 1.55
2,00 1.88 1.98 1.90
2,26 2.14 2.25 2.14
2,45 2.30 2.46 2.33
2,62 2.47 2.62 2.50 | 0.98
1.58
1.94
2.20
2.39
2.55 | | | Total Distortion Avg. Distortion | , in Percent:
, in Percent: | | 3,57 3,34 3,56 3,38
3,46 | | ### Average Data for Free-Fall Drop Tests from 33½" Height of Conventional and Improved Stevedore Pallets | Pallet
Design | Pallet
No. | Test
Weight | Diag | gonals
Fre | , in li
e-Fall | es in l
n., Af
Drop | ter G | iven | | Sum of Average
Change in Length
of Diag., in In., | |------------------|---|--|--|--|---|--|--|--|---|---| | Conventional | Aa1
Aa2
Aa3
Aa4
Aa5
Avg. | in Lb.
138.34
141.62
138.62
139.53
139.28
139.48 | 1.82
1.77
1.69
1.70
1.85
1.77 | 3.03
2.91
3.03
3.21 | 3rd
4.24
4.04
3.96
4.12
4.18
4.11 | | 5.89
5.72
6.04 | 6.56 | In Pct.
9,20
9,09
8,90
9,27
9,68
9,23 | 27.20
26.39
25.75
26.83
27.97
26.83 | | | Ab1
Ab2
Ab3
Ab4
Ab5
Avg. | 143.50
141.16
142.70
142.62
139.81
141.96 | 1.87
1.84
1.83
2.01
1.90
1.89 | 3.02
3.25 | 3.87
3.88
4.09
4.03 | 4.69
4.57
4.63
4.79
4.51
4.64 | 5.23 | 5.74
5.64
5.80
5.95
5.63
5.75 | 7.80
7.66
7.88
8.08
7.64
7.81 | 24,64
24,08
24,39
25,50
24,30
24,58 | | | Ac1
Ac2
Ac3
Ac4
Ac5
Avg. | 140.59
140.56
137.44
140.03
138.16
139.36 | 1.20
1.18
1.17
1.12
1.23
1.18 | 1.89
1.78
1.91
1.85
1.92
1.87 | 2.26
2.21
2.35
2.43
2.48
2.35 | 2.61
2.50
2.72
2.75
2.92
2.70 | 2.88
2.75
3.16
3.10
3.31
3.04 | 3.17
2.99
3.38
3.28
3.71
3.31 | 4.31
4.06
4.59
4.46
5.04
4.49 | 14,01
13,41
14,69
14,53
15,57
14,44 | | | Ad1
Ad2
Ad3
Ad4
Ad5
Avg. | 145.86
148.28
142.30
139.41
142.76
143.72 | 1.21
1.33
1.29
1.24
1.19
1.25 | 1.95
2.16
2.14
1.88
1.97
2.02 | 2.75
2.37 | 2.71
3.13
3.34
2.78
3.73
3.14 | | 3.27
3.57
4.25
3.22
3.29
3.52 | 4.44
4.85
5.77
4.38
4.46
4.78 | 14.61
16.25
17.62
14.47
14.70
15.53 | | Improved | Bal
Ba2
Ba3
Ba4
Ba5
Avg. | 164.34
163.88
163.03
158.69
161.26
162.24 | 1.47
1.44
1.57
1.45
1.51
1.49 | 2.58
2.49
2.66
2.48
2.60
2.56 | 3.44 | 4.43
4.27
4.48
4.22
4.21
4.32 | 5.22
4.95
4.86 | 5.95
5.74
5.93
5.57
5.50
5.74 | 8.08
7.80
8.06
7.57
7.47
7.80 | 23.13
22.41
23.49
22.08
22.05
22.63 | | | Bb1
Bb2
Bb3
Bb4
Bb5
Avg. | 159.12
167.81
161.33
158.33
158.59
161.04 | 1,72 | 2.51
2.48
2.50
2.48
2.66
2.53 | 3.25
3.41
3.19
3.19
3.47
3.30 | 3.70
4.15
3.80
3.72
4.07
3.89 | 4.71
4.30
4.20
4.56 | 5.05 | 6.10
7.11
6.43
6.25
6.86
6.55 | 19.45
21.58
19.99
19.66
21.53
20.44 | | | Bc1
Bc2
Bc3
Bc4
Bc5
Avg. | 158.59
162.50
158.26
154.92
154.64
157.78 | 0.83
0.92
0.85
0.94 | 1.26
1.46
1.38 | 1.64
1.85
1.69
1.90 | 1.77
1.98
2.13
1.98
2.29
2.03 | 2.10
2.37
2.20
2.53 | 2.26
2.52
2.37
2.71 | 2. 94
3.08
3.43
3.22
3.68
3.27 | 9.99
10.07
11.26
10.47
11.87
10.73 | | | Bd1
Bd2
Bd3
Bd4
Bd5
Avg. | 153.56
153.78
154.44
162.25
156.52
156.11 | 0.97
0.93
1.04
0.98 | 1.64
1.45
1.76
1.58 | 2.03
1.88
2.12
1.94 | 2.34
2.22
2.28
2.37
2.20
2.28 | 2.50
2.47
2.70
2.39 | 2.67
2.66
2.79
2.55 | 3.77
3.62
3.61
3.79
3.46
3.65 | 12.40
12.03
11.67
12.78
11.64
12.10 | APPENDIX TABLE 24 Two-Factorial Analysis of Variance of Free-Fall Drop Test Data for Pallets of Two Designs, Assembled with Four Different Nails | Source of
Variation | | Degrees of
Freedom | | Computed f | Critical
f | | |------------------------|---------|-----------------------|--------|------------|---------------|----| | Design | 149.61 | 7 | 149.61 | 202.01 | 4,15 | S | | Nail | 1117.72 | 3 | 372.53 | 503,47 | 2.90 | Š | | nteraction | 1.00 | 3. | 0.33 | 0.45 | 2.90 | NS | | Error | 23.70 | 32 | 0.74 | | | | | Total | 1292.03 | 39 | | | | | Duncan's Multiple Range Test on Average Cumulative Length Changes of Diagonals After 6th Drop APPENDIX TABLE 25 Detailed Deckboard-Stringer Separation Data for Pallets of Conventional Design | Pallet
Nails | | Pallet Test
Weight, in Lb. | Failure of Leading-Edge Deckboard | Number of Runs
Prior to End of Test | |------------------|------|-------------------------------|--|--| | 2 ½"
Nail (a) | Aa1 | 136.98 | Splitting (6); first deckboard off two stringers (6); six nails withdrawn. | 6 | | | Aa2 | 139.89 | Splitting (5); first deckboard off two stringers (7); six nails withdrawn. | 7 | | | Aa3 | 137,45 | First deckboard off two stringers (9); six nails withdrawn. | 9 | | | Aa4 | 138.19 | Splitting (1); first deckboard off two stringers (7); six nails withdrawn | | | | | | and one nail pulled through at split. | 7 | | | Aa5 | 137.91 | First deckboard off two stringers (4); six nails withdrawn. | 4 | | | Avg. | 138,08 | | 7 | | 2] * | Abl | 141,91 | First deckboard off two stringers (10); one nail broken and five nails | | | Nail (b) | | | withdrawn. | 10 | | | Ab2 | 139,50 | Splitting (2,5); first deckboard off two stringers (9); one nail broken, | | | | ~~~ | 707.50 | two nails pulled
through, and three nails withdrawn. | 9 | | | Ab3 | 141,81 | First deckboard off two stringers (22); one nail broken and five nails | • | | | ~ | 141,01 | withdrawn. | 22 | | | Ab4 | 141,19 | First deckboard off two stringers (38); six nails withdrawn, | 38 | | | Ab5 | 138.53 | | 30 | | | رس | 130.33 | Splitting (3, 8, 10); first deckboard off two stringers (24); five nails | d. 24 | | | A | 140.40 | withdrawn and one nail pulled through at split; first deckboard destroye | 21 | | | Avg. | 140.60 | | 21 | | 2 ½"
Nail (c) | Ac î | 138.70 | First deckboard off two stringers (3); two nails broken and four nails | | | | | | withdrawn. | 3 | | | Ac2 | 139.59 | Splitting (6, 13, 14); first deckboard off two stringers (14); one nail | | | | | | broken, two nails pulled through, and two nails withdrawn. | 14 | | | Ac3 | 136,26 | Splitting (1, 1); first deckboard off two stringers (5); one broken nail, | | | | | | two nails pulled through, and three nails withdrawn; first deckboard | | | 3"
Nail (d) | | | destroyed. | 5 | | | Ac4 | 139,25 | Splitting (4, 5, 6); first deckboard off two stringers (7); four nails | | | | | | withdrawn, two nails pulled through, and one nail broken; first deck- | | | | | | board destroyed, | 7 | | | Ac5 | 136,75 | Splitting (32); first deckboard off two stringers (60); two nails broken, | | | | | | three nails withdrawn, and one noil pulled through at split; first deck- | | | | | | board destroyed (60). | 60 | | | Avg. | 138,11 | 20000 | 18 | | | _ | = | C 1111 /71 070 Cost deal board off A to this cost /100\ form and | | | | Adl | 143,80 | Splitting (71, 97); first deckboard off two stringers (100); four nails | 104 | | | | | broken, one nail pulled through, and two nails withdrawn. | 104 | | | Ad2 | 147.06 | Splitting (5, 129, 131, 132); first deckboard off two stringers (137); | 107 | | | | | three nails broken and two nails pulled through. | 137 | | | Ad3 | 141.06 | Splitting (4); first deckboard off two stringers (10); two nails broken, | 10 | | | | | two nails pulled through, and two nails withdrawn. | 10 | | | Ad4 | 138.02 | Splitting (6, 11, 11); first deckboard off two stringers (12); one nail | | | | | | broken, three nails withdrawn, and two pulled through at splits; | 10 | | | | | first deckboard destroyed (12). | 12 | | | Ad5 | 141.95 | Splitting (6, 35, 48, 106); first deckboard off central stringer (106); | 107 | | | | | first deckboard destroyed (106). | 106 | | | Avg. | 142.38 | | 74 | APPENDIX TABLE 26 Detailed Deckboard-Stringer Separation Data for Pallets of Improved Design | Pailet
Nails | | Pallet Test
Weight, in Lb. | Failure of End Deckboard | Number of Runs
Prior to End of Test | |-------------------------|-------------|-------------------------------|--|--| | 2 ½"
Nail (a | Bai | 161.48 | First deckboard off two stringers (85); eight nails withdrawn; second deckboard off one stringer; three nails withdrawn (85). | 85 | | | Ba 2 | 160.50 | First and second deckboards off two stringers (62); eight and six nails with- | | | | Ba3 | 160.12 | drawn. First deckboard off two stringers (88); eight nails withdrawn; second deck- | 62 | | | 8a4 | 155.86 | board off one stringer (88); three nails withdrawn. Splitting (222, 227, 292); first deckboard off two stringers (312); seven nail withdrawn and one nail pulled through; second deckboard off two stringers | | | | Ba5 | 159.61 | (312); one nail broken and five nails withdrawn. Splitting (199); first deckboard off two stringers (252); eight nails withdrawn; second deckboard off one outer stringer (252); two nails withdrawn | 312 | | | Avg. | 159.51 | and one nail pulled through. | 252
1 60 | | 2 <u>اس</u>
Nail (b) | 861 | 157.20 | Splitting (47); first and second deckboards off two stringers (245); three nails broken and five nails withdrawn; two nails broken and three nails | | | | 862 | 162.53 | withdrawn (one nail for the second deckboard was a shiner.) Splitting (432); first and second deckboards off two stringers (434); seven nails broken and two noils withdrawn; four nails broken and one nail | 245 | | | 863 | 158,16 | pulled through. Splitting (4); first deckboard off center stringer and one-half of first deckboard, split in two, off one outer stringer (220); two nails broken and | 434 | | | DL 4 | 157 40 | four nails withdrawn. | 220 | | | B b4 | 156.48 | First deckboard off two stringers (552); five nails broken and three nails withdrawn; second deckboard off center stringer (552); three nails broken | 552 | | | Bb5 | 156.92 | Splitting (373); first and second deckboards off two stringers (375); four nails broken and four nails withdrawn; three nails broken and three nails | | | | Avg. | 158,26 | withdrawn. | 375
365 | | 2 ½"
Nail (c) | Bc1 | 156.44 | First deckboard off two stringers (271); seven nails broken and one nail withdrawn. | 271 | | . , , | Bc2 | 160,00 | First and second deckboards off two stringers (271); six nails broken and two nails withdrawn; six nails broken. | 271 | | | 8c3 | 156.95 | First and second deckboards off two stringers (221); five nails broken and three nails withdrawn; three nails broken and three nails withdrawn. | 221 | | | Bc4 | 153,25 | Splitting (3); first deckboard off two stringers (341); five nails broken and three nails withdrawn; four nails broken. | 341 | | | 8c 5 | 152.47 | First deckboard off two stringers (406); eight nails broken; one nail bro- | 406 | | | Avg. | 155.82 | ken and two nails withdrawn at center stringer. | 302 | | 3" | Bd1 | 152.67 | Splitting of leading deckboard (498) and of second deckboard (521); first | 560 | | Noil (d) | Bd2 | 152.39 | deckboard off two stringers (560); eleven nails broken; four nails broken.
Splitting of second deckboard (551); first deckboard off two stringers (598);
ten nails broken; second deckboard off one stringer (598); three nails broken | | | | 8d3 | 152.26 | First and second deckboards off two stringers (383); six nails broken, one nail withdrawn, and one nail oulled through at split; four nails broken and | | | | Bd4 | 159,50 | two nails pulled through at split; first and second deckboards destroyed (383 Splitting (316); first and second deckboards off two stringers (319); seven nails broken and one nail pulled through at split; five nails broken and |) . 383
319 | | | Bd5 | 154,06 | one nail withdrawn. First deckboard off two stringers (451); eight nails broken; five nails broken | | | | Avg. | 156.94 | The second of the stringer (1917) organization of | 462 | APPENDIX TABLE 27 Two-Factorial Analysis of Variance of Incline Impact Test Data for Pallets of Two Designs, Assembled with Four Different Nails | Source of
Variation | | Degrees of
Freedom | Mean
Square | Computed f | Critical
f | | |------------------------|------------|-----------------------|----------------|------------|---------------|---| | Design | 856.15 E3 | 7 | 856.15 E3 | 124,72 | 4.15 | S | | Nail | 176.21 E3 | | 58.74 E3 | 8.56 | 2.90 | S | | Interaction | 78.46 E3 | 3 | 26.15 E3 | 3.81* | 2.90 | S | | Error | 219.67 E3 | 32 | 6.86 E3 | | | | | Total | 1330,49 E3 | 39 | | | | | ^{*}not significant at 1% level of significance. Duncan's Multiple Range Test on Average Number of Runs during Incline Impact Test APPENIDIX TABLE 284 Detailed Follow-Up Load-Deflection Data, in Lb, and 1/1000 in, Pallets of Conventional Design | Test
Load | A | Palie: | No.
C | Agī
D | E | A F | Pailet
B | No. A | 42 | E | A P | allet
8 | No. A | 3 D | ٤ | A | Pailet
B | No. | Aq4
D | E | A 1 | Pallet
B | No. 4 | 50 0 | E | |--------------|------------|------------|------------|--------------|------------|------------|-------------|--------------|------------|---------------|------------|------------|--------------|------------|------------|------------|-------------|------------|--------------|--------------|------------|-------------|----------------------|-------------|--------------------------| | 0 | 000 | | 200 | 15 | 09 | 38 | 68 | 67 | 14 | 07 | 41 | 32 | 50 | 10 | 08 | 38 | 57 | 53 | 07 | 09 | 48 | 55 | 57 | 13 | 13 | 52 | 66 | 65 | | | 17
32 | 10
20 | 46
106 | 78
145 | 76
149 | 20
45 | 09
17 | 52
107 | 46
112 | 66
136 | 16
30 | 13
21 | 100 | 68
126 | 128 | 09
18 | 13
27 | 64
128 | 73
148 | 76
152 | 15
30 | 15
27 | 59
116 | 74
145 | 74
145 | | 400 | 35 | 22 | 121 | 158 | 164 | 51 | 18 | 119 | 122 | 150 | 38 | 30 | 112 | 140 | 139 | 21 | 32 | 139 | 163 | 167 | 33 | 29 | 126 | 156 | 157 | | 600 | 47 | 32 | 180 | 220 | 237 | 71 | 27 | 175 | 175 | 219 | 54 | 39 | 163 | 198 | 202 | 30 | 47 | 198 | 241 | 245 | 49 | 38 | 180 | 227 | 229 | | ••• | 51
61 | 34
45 | 196
249 | 235
298 | 254
323 | 75
88 | 28 | 188 | 186 | 235 | 60
73 | 47
54 | 175 | 211 | 215 | 32 | 52 | 208 | 258 | 261 | 52 | 40 | 194 | 241 | 244 | | 800 | 65 | 47 | 263 | 315 | 340 | 92 | 36
39 | 235
249 | 234
244 | 296
312 | 82 | 60 | 221 | 268
282 | 275
292 | 39
43 | 65
68 | 262
273 | 329
345 | 333
348 | 65
69 | 47
49 | 244
259 | 303
321 | 310
327 | | 1000 | 74 | 57 | 315 | 383 | 407 | 103 | 48 | 298 | 292 | 375 | 94 | 66 | 284 | 338 | 352 | 49 | 79 | 325 | 410 | 412 | 82 | 56 | 315 | 379 | 391 | | 1000 | 80 | 59 | 331 | 402 | 427 | 106 | 49 | 310 | 303 | 391 | 102 | 70 | 299 | 353 | 368 | 51 | 82 | 339 | 429 | 430 | 85 | 58 | 331 | 400 | 409 | | 1200 | 90
95 | 68
70 | 380
398 | 466
481 | 492
511 | 117 |
60
62 | 358
370 | 350
363 | 452
470 | 113 | 76
79 | 347
363 | 405
422 | 428
446 | 57
60 | 93
95 | 391
405 | 494
513 | 496
514 | 95
99 | 65
67 | 380
395 | 463
482 | 472
490 | | | 105 | 75 | 464 | 536 | 580 | 131 | 72 | 418 | 413 | 531 | 131 | 84 | 413 | 478 | 508 | 65 | 103 | 457 | 574 | 579 | 107 | 74 | 443 | 540 | 550 | | 1400 | 109 | 77 | 478 | 551 | 598 | 135 | 73 | 429 | 424 | 547 | 142 | 87 | 428 | 492 | 524 | 68 | 106 | 470 | 593 | 598 | 109 | 76 | 457 | 556 | 567 | | 1600 | 120 | 84 | 527 | 607 | 663 | 145 | 81 | 475 | 473 | 608 | 152 | 92 | 479 | 543 | 585 | 75 | 113 | 520 | 656 | 665 | 117 | 83 | 506 | 615 | 632 | | | 123 | 86
93 | 540
589 | 621
676 | 683
744 | 149
158 | 83
90 | 488
532 | 487
533 | 626
687 | 167
175 | 96
103 | 498
547 | 560
610 | 605
668 | 78
89 | 116 | 534
585 | 674
736 | 684
748 | 120
127 | 87
93 | 522
569 | 632
687 | 650
711 | | 1800 | 136 | 95 | 604 | 690 | 761 | 161 | 93 | 544 | 547 | 705 | 184 | 104 | 565 | 630 | 690 | 91 | 125 | 599 | 756 | 767 | 129 | 96 | 587 | 704 | 729 | | 2000 | 145 | 102 | 651 | 742 | 820 | 172 | 105 | 588 | 583 | 764 | 193 | 110 | 610 | 678 | 746 | 98 | 131 | 645 | 814 | 826 | 136 | 103 | | 756 | 785 | | | 150 | 101 | 672
719 | 761
813 | 840
898 | 175 | 108 | 601 | 606
647 | 783
837 | 198 | 112 | 627 | 695
741 | 766 | 101
108 | 134
139 | 658
700 | 835
894 | 846
903 | 137
144 | 105 | | 774
823 | 804 | | 2220 | 159
164 | 110 | 739 | 830 | 918 | 183
188 | 116 | 643
658 | 666 | 860 | 207
212 | 118 | 671
687 | 758 | 821
843 | 111 | 142 | 714 | 914 | 924 | 146 | 114 | | 839 | 860
878 | | 2400 | 172 | 117 | 734 | 878 | 974 | 197 | 122 | 698 | 708 | 913 | 221 | 123 | 728 | 803 | 894 | 120 | 149 | 761 | 970 | 980 | 159 | 121 | 760 | 890 | 935 | | 2-00 | 180 | 120 | 808 | 898 | 996 | 200 | 124 | 711 | 724 | 936 | 224 | 125 | 744 | 820 | 915 | 123 | 152 | 775 | 991 | 1001 | 161 | 123 | 777 | 903 | 953 | | 2600 | 187 | 125 | 851
871 | 944
962 | | 211
214 | 137 | 751
765 | 768 | 990 -
1012 | 232
235 | 132 | 784
802 | 862
881 | 966
988 | 131
134 | 156
159 | 822
840 | 1042
1064 | 1053
1077 | 167
170 | 130
132 | 818
840 | | 1003
1022 | | | 202 | 132 | 914 | | | 224 | 145 | 802 | | 1060 | 243 | 139 | 839 | 920 | | 142 | 165 | | 1111 | | 177 | 138 | 877 | | 1070 | | 2800 | 208 | 135 | 934 | 1025 | 1142 | 227 | 147 | 819 | 840 | 1086 | 246 | 142 | 858 | 941 | 1060 | 145 | 169 | 900 | 1134 | 1153 | 179 | 139 | 895 | 1024 | 1091 | | 3000 | 215 | 141 | | | | 236 | 158 | 857 | | 1136 | 253 | 148 | 894 | | 1107 | 153 | 174 | | 1179 | | 190 | 146 | | 1065 | | | | 223
230 | 142
148 | | 1084 | | 239
246 | 165
169 | 877
908 | | 1164
1207 | 257
264 | 150
156 | | 1004 | | 156
163 | 177 | | 1203
1247 | | 191
195 | 150
156 | 971 :
1004 : | | 1168 | | 3200 | 238 | | | 1144 | | 250 | 177 | 929 | | 1237 | 268 | 160 | | 1065 | | 166 | | | 1273 | | 199 | | 1027 | | | | 3400 | 245 | 156 | 1096 | 1182 | 1326 | 257 | 182 | 958 | 986 | 1278 | 275 | 166 | 1004 | 1100 | 1246 | 175 | 191 | 1064 | 1311 | 1344 | 203 | 166 | 1060 | 1187 | 1278 | | | 254 | | | 1204 | | 260 | 186 | | 1008 | | 279 | | 1027 | | | 179 | | | 1341 | | 207 | | 1086 | | 1305 | | 3600 | 262
269 | | | 1240 | | 270
273 | 196 | 1010 | | 1382 | 284
289 | | 1060 | | | 186
190 | | | 1379 | | 215
217 | | 1124
1150 | | 1375 | | 3800 | 279 | | | 1300 | | 281 | 210 | 1068 | | | 296 | | 1116 | | | 197 | | | 1446 | | 222 | | 1160 | | 1415 | | 3000 | 288 | | | 1327 | | 286 | | | | | 303 | | 1143 | | | 202 | | | 1477 | | 225 | | 1205 | | | | 4000 | 295
303 | | | 1360
1387 | | 293
296 | | 1119 | | | 309
320 | | 1172 | | | 209
213 | | | 1514
1546 | | 232
235 | | 1241
1265 | | 1509 | | | 310 | | | 1423 | | 305 | | 1175 | | | 326 | | 1231 | | | 219 | | | 1582 | | 240 | | 1292 | | 1546 | | 4200 | 322 | 190 | 1398 | 1457 | 1650 | 309 | 243 | 1200 | 1224 | 1608 | 336 | 202 | 1259 | 1373 | 1565 | 224 | 230 | 1344 | 1615 | 1671 | 237 | 210 | 1325 | 1472 | 1587 | | 4400 | 328 | | | 1493 | | 314 | | | | 1646 | 342 | | 1287 | | | 231 | | | 1650 | | 245
248 | | 1361
1390 | | 1627
1658 | | | 336
342 | | | 1520
1555 | | 319
324 | | 1258
1281 | | 1720 | 350
355 | | 1312 | | | 236
242 | | | 1683
1716 | | 255 | | 1424 | | 1697 | | 4600 | 348 | | | | | 329 | | | | | 362 | | 1335 | | | 248 | | | 1752 | | 258 | | 1452 | | 1728 | | 4800 | 355 | | | 1620 | | 337 | | 1335 | | | 366 | | 1356 | | | 255 | | | 1785 | | 263 | | 1477 | | 1763 | | ~~~ | 359 | | | 1650 | | 338
344 | | 1363
1386 | | | 379
384 | | 1369
1395 | | | 262
269 | | | 1823
1857 | | 266
273 | | 1509
1548 | | 179 9
1840 | | 5000 | 364
369 | | | 1683
1719 | | 348 | | 1413 | | | 390 | | 1407 | | | 276 | | | 1900 | | 276 | | 1580 | | 1881 | | 5200 | 375 | | | 1751 | | 353 | | 1442 | | | 395 | 238 | 1433 | 1795 | 2063 | 284 | 273 | 1632 | 1934 | 2023 | 284 | 261 | 1617 | 1753 | | | 3200 | 380 | | | 1784 | | 355 | | 1476 | | | 399 | | 1447 | | | 291 | | | 1982 | | 287 | | 1648 | | 1959 | | 5400 | 384
389 | | | 1817
1856 | | 362
366 | | 1506
1533 | | | 404
418 | | 1470 | | | 298
306 | | | 2014
2058 | | 295
298 | | 16 83
1717 | | 1997
2041 | | 5.400 | 395 | | | | | 372 | | 1560 | | | 423 | | 1434 | | | 314 | | | 2091 | | 303 | 279 | 1752 | 1889 | 2082 | | 5600 | 399 | | | 1924 | 2211 | 376 | 311 | | | | 433 | | 1385 | | | 321 | | | 2135 | | 306 | | 1786 | | 2126 | | 5800 | 405 | | | 1958 | | 381 | | 1626 | | | 438 | | 1402 | | | 330
337 | | | 2167 | | 314 | | 1821
1856 : | | 2165
2208 | | | 409
415 | | | 1997
2030 | | 386
391 | | 1653 | | | 444
448 | | 1404 | | | 337 | | | 2216
2247 | | 317
323 | | 1893 | | | | 6000 | 420 | | | 2067 | | 395 | | 1700 | | | 454 | | 1423 | | | 353 | | | 2291 | | 327 | | 1927 | | | APPENDIX TABLE 286 # Detailed Follow-Up Load-Deflection Data, in Lb. and $1/1000\,{\rm In}$. Pallets of Conventional Design | Test
Load | A | Paliet
3 | No.
C | Ab1
D | E | A | Pailei
B | l No.
C | Ab2
D | E | ai f | allet
8 | No. / | ъ3
В | E | A | Pailet
B | ₩.
C | Ab4
D | Ε | A 1 | Pallet
B | No. | Ab5
D | E | |--------------|------------|-------------|------------|--------------|------------|------------|-------------|--------------|------------|--------------|------------|------------|--------------|--------------|--------------|--------------|-------------|--------------|------------|--------------|------------|-------------|--------------|--------------|--------------| | 0 | 000 | | 200 | 09 | 13 | 52 | 37 | 58 | 08 | 11 | 49 | 54 | 56 | 08 | 11 | 55 | 59 | 61 | 08 | 09 | 50 | 60 | 58 | 06 | 11 | 59 | 54 | 38 | | 400 | 10
18 | 15
32 | 57
108 | 43
105 | 65
125 | 10
25 | 13
21 | 54
112 | 60
122 | 63
128 | 10
24 | 13
23 | 63
131 | 65
127 | 69
142 | 12
22 | 11
21 | 58
115 | 68
134 | 68
136 | 08
13 | 15
27 | 69
134 | 62
121 | 48
117 | | 600 | 22
30 | 36
54 | 118
170 | 118 | 139
205 | 29
43 | 24
32 | 123
177 | 134
196 | 141
206 | 27
39 | 25
35 | 145
210 | 135
195 | 153
221 | 26
35 | 24
32 | 125
180 | 145
216 | 149
218 | 15
21 | 3!
43 | 149
209 | 133 | 132
197 | | 800 | 33
43 | 59
79 | 184
238 | 201
265 | 224
290 | 45
56 | 35
42 | 187
239 | 208
268 | 218
283 | 42
53 | 37
46 | 221 | 206
267 | 234
302 | 38
45 | 35
44 | 190
240 | 227
291 | 232
296 | 23
29 | 46
57 | 222
278 | 202
256 | 210
276 | | | 46
54 | 84
103 | 249
298 | 283
345 | 307
372 | 63
73 | 43
50 | 254 | 283 | 298 | 56 | 49 | 293 | 279 | 315 | 47 | 46 | 251 | 303 | 309 | 21 | 60
69 | 293 | 268 | 289 | | 1000 | ∞ | 106 | 311 | 365 | 390 | /3
86 | 53 | 306
324 | 342
362 | 364
382 | 65
68 | 58
60 | 352
364 | 339
353 | 382
396 | 55
57 | 54
57 | 299
311 | 364
375 | 372
385 | 38
41 | 72 | 344
359 | 323
339 | 349
365 | | 1200 | 67
71 | 116
120 | 357
369 | 425
442 | 451
468 | 94
97 | 60
63 | 380
395 | 416
427 | 444
460 | 79
81 | 69
69 | 423
437 | 414
429 | 464
478 | 64
65 | 65
67 | 358
370 | 432
445 | 445
459 | 47
49 | 80
83 | 409
421 | 393
406 | 424
438 | | 1400 | 76 | 130 | 415 | 499 | 527 | 109 | 69 | 457 | 484 | 525 | 91 | 78 | 497 | 490 | 544 | 72 | 74 | 415 | 500 | 516 | 57 | 92 | 471 | 462 | 498 | | | 82
87 | 133 | 427
473 | 517
572 | 544
604 | 111 | 73
80 | 473
528 | 498
550 | 542
605 | 95
106 | 87
95 | 514
578 | 506
566 | 561
633 | 73
82 | 76
83 | 430
479 | 513
566 | 532
591 | 59
66 | 94
103 | 484
536 | 473
525 | 512
570 | | 1600 | 91 | 145 | 488 | 591 | 621 | 120 | 83 | 544 | 565 | 624 | 108 | 100 | 593 | 582 | 651 | 83 | 85 | 492 | 579 | 608 | 70 | 106 | 553 | 540 | 586 | | 1800 | 100 | 167 | 547 | 646 | 690 | 128 | 90 | 597 | 615 | 686 | 114 | 108 | 650 | 637 | 714 | 92 | 91 | 547 | 629 | 670 | 77 | 112 | 602 | 588 | 644 | | | 103
107 | 171
177 | 564
607 | 665
714 | 711
763 | 131 | 95
104 | 613
669 | 632
684 | 705
768 | 117
125 | 112 | 668
719 | 655
708 | 735
796 | 94
100 | 93
99 | 564
605 | 656
692 | 689
741 | 82
88 | 114 | 624
671 | 608
652 | 664
720 | | 2000 | 111 | 180 | 622 | 734 | 783 | 144 | 107 | 684 | 700 | 787 | 127 | 125 | 735 | 724 | 814 | 104 | 103 | 623 | 709 | 762 | 93 | 122 | 693 | 670 | 739 |
 2200 | 115 | 187 | 665 | 783 | 835 | 150 | 113 | 733 | 747 | 843 | 136 | 134 | 738 | 778 | 875 | 111 | 109 | 666 | 757 | 814 | 99 | 128 | 741 | 713 | 793 | | | 120 | 189
207 | 679
724 | 803
859 | 853
910 | 151
162 | 117 | 749
802 | 768
818 | 863
922 | 137
145 | 138 | 806
855 | 796
846 | 894
951 | 114 | 111 | 684
725 | 774
819 | 833
883 | 101
108 | 131
136 | 763
808 | 731
771 | 813 | | 2400 | 127 | 208 | 739 | 879 | 930 | 166 | 128 | 822 | 840 | 942 | 146 | 146
150 | 873 | 864 | 971 | 119
123 | 117
120 | 743 | 837 | 902 | 111 | 139 | 832 | 791 | 862
884 | | 2600 | 131 | 214 | 777 | 922 | 977 | 173 | 133 | 867 | 384 | 994 | 155 | 157 | 917 | | 1026 | 128 | 127 | 785 | 879 | 950 | 117 | 145 | 873 | 827 | 932 | | | 135 | 216 | 794 | 942 | 997 | 180 | 137 | 887 | | 1017 | 156 | 161 | 937 | | 1048 | 130 | 128 | 804 | 898 | 969 | 120 | 148 | 898 | 846 | 955 | | 2800 | 143 | 221
224 | 831
843 | 1009 | 1045 | 188
193 | 145
148 | 933
955 | | 1069
1094 | 164
165 | 167 | 979
1001 | 1000 | 1100 | 136
137 | 135
137 | 843
863 | 939
958 | 1016 | 125
129 | 156
159 | 940
969 | | 1000
1027 | | 3000 | 150 | 241 | 884 | | | 198 | 153 | | 1016 | | 174 | | | 1045 | | 145 | 143 | 903 | 998 | 1085 | 136 | | 1009 | | 1070 | | ~~~ | 154 | 242 | | 1079 | | 201 | | 1016 | | | 175 | | | 1067 | | 147 | 145 | | | 1108 | 139 | 163 | | | 1097 | | 3200 | 158
162 | 247
248 | | 1114 | | 209
213 | | 1061 | | | 184
186 | | | 1111 | | 152
155 | 152
154 | | | 1152
1177 | 145
148 | | 1079
1108 | | 1141
1171 | | 3400 | 169 | 254 | | 1172 | | 220 | | 1124 | | | 194 | | | 1177 | | 162 | | | | 1220 | 154 | | | 1045 | | | 3400 | 174 | | | 1198 | | 223 | | 1148 | | | 196 | | | 1201 | | 165 | | | 1138 | | 158 | | | 1069 | | | 3600 | 179
184 | | | | | 230
233 | | 1187 | | | 202
204 | | | 1242 | | 171
174 | | 1081 | 1172 | 1286 | 164
168 | | | 1096
1119 | | | 2000 | 189 | | | 1289 | | 241 | | 1249 | | | 211 | | | 1305 | | 180 | | 1140 | | 1350 | 175 | | | 1146 | | | 3800 | 193 | | | | | 244 | | 1273 | | 1456 | 213 | | | 1330 | | 183 | | 1166 | | 1377 | 178 | 207 | 1318 | 1171 | 1379 | | 4000 | 198 | | | 1360 | | 251 | | 1308 | | 1497 | 224 | | | 1368 | | 190 | | | 1286 | | 183
188 | | 1350 | 1196
1221 | 1413 | | 4000 | 202
207 | | | 1387
1414 | | 254
262 | | 1333
1368 | | 1568 | 226
232 | | | 1395
1433 | | 191
197 | | | 1311 | | 194 | | | 1248 | | | 4200 | 210 | | | 1438 | | 265 | | 1393 | | | 235 | | | 1460 | | 200 | | 1285 | | 1513 | 198 | | | 1274 | | | 4400 | 217 | | | 1464 | | 271 | | 1426 | | 1638 | 244 | | | 1496 | | 205 | | | 1402 | | 205 | | 1489 | | 1552 | | 4600 | 220
226 | | | 1494 | | 275
282 | | 1453
1489 | | 1668
1709 | 247
254 | | | 1526
1563 | | 207
213 | | 1344
1376 | | 1581
1619 | 210
216 | | 1526
1559 | | 1588
1622 | | | 231 | 312 | 1341 | 1552 | 1667 | 287 | 237 | 1516 | 1535 | | 257 | 254 | 1590 | 1590 | 1788 | 216 | | 1404 | | 1650 | 221
227 | | 1596 | 1379
1402 | 1659 | | 4900 | 238
241 | 331 | 1398 | 1631 | | 293
297 | 246 | 1552
1580 | 1596 | 1779
1812 | 265
268 | | | 1625
1653 | 1830
1864 | 22 I
22 3 | 229 | 1437
1464 | 1548 | 1687
1721 | 234 | 259 | 1668 | 1432 | 1734 | | 5000 | 248 | | | | 1779 | 304 | | 1615 | | | 276 | | 1693 | | 1905 | 230 | | 1498 | | 1757 | 239
245 | | | 1457
1489 | | | | 251
259 | | | 1680
1702 | 1843 | 309
314 | | 1645
1679 | | 1887
1928 | 279
286 | | 1723
1758 | | 1940 | 233
240 | | 1529
1561 | | 1793
1828 | 249 | | 1766 | | 1839 | | 5200 | 263 | | | 1734 | | 319 | | 709 | | | 289 | | 1787 | | 2015 | 243 | | 1590 | | 1864 | 255 | 282 | 1808 | 1543 | 1882 | | 5400 | 270 | | | 1780 | | 325 | | 1744 | | | 296 | | | 1809 | | 249 | | 1620 | | 1900 | 261 | | 1837 | | 1914 | | | 273
280 | | | 1812
1832 | | 330
336 | | 1773
1806 | | | 299
306 | | | 1839
1868 | 2089 | 251
257 | | 1650
1682 | | 1937
1971 | 266
271 | 297 | 1880
1910 | | 1959
1991 | | 5600 | 284 | | | | 2024 | 340 | 284 | 1839 | | | 309 | 293 | 1919 | 1900 | 2165 | 260 | 273 | 1713 | 1791 | 2011 | 276 | 302 | 1957 | 1655 | 2039 | | 5800 | 290 | | | 1683 | | 347 | | 1872 | | | 317 | | | 1929 | | 265 | | 1741 | | 2046 | 282 | | | 1676 | | | | 295
301 | | | 1918
1966 | 2094 | 351
357 | | 1905
1939 | | 2195 | 319
326 | | 1987 | 1961
1989 | 2239 | 271
273 | | 1779 | 1853 | | 287
293 | | 2032
2061 | | 2118
2151 | | 6000 | 306 | | | 1999 | | 364 | | 1981 | | | 329 | | | 2023 | | 276 | | | 1921 | | 298 | | | 1767 | | APPENDIX TABLE 28c # Detailed Follow-Up Load-Deflection Data, in Lb. and 1/1000 In. Pallets of Conventional Design | Test
Load | A f | Pallet
B | No
C | Acl
D | E | ,
A | ollet
R | No
C | Ae2
D | E | A F | Pailet
8 | No. / | Ac3
D | ı
E | A f | tello ^e
8 | No. / | Ac4
D | E | A P | 'allet
B | No. / | 4c5
D | E | |-------------------|----------------|----------------|-------------------|-------------------|--------------------------|---------------------|----------------|-------------------|-------------------|--------------------|------------------------|----------------|-------------------|-------------------|-------------------|----------------|-------------------------|-------------------|-------------------|-------------------|--------------------|----------------|-------------------|-------------------|--------------------| | 0 | 000 | 000 | 000 | 000 | 000 | | 000 | 000 | - | | | _ | | _ | | | | | - | _ | | - | - | _ | - | | 200 | 08 | 11 | 51
59 | 60 | 60 | 000
07
09 | 08 | 45 | 000
51 | 000
53 | 000
08 | 000
09 | 000
55 | 000
57 | 61 | 000
16 | 14 | 000
52 | 000
68 | 000
63 | 000 | 000 | 000
43 | 000
38 | 900
46 | | 400 | 19 | 24 | 119 | 67
132 | 137 | 18 | 09
18 | 56
113 | 63
120 | 131 | 09
21 | 19 | 129 | 68
137 | 72
145 | 19
36 | 16
27 | 131 | 79
[45 | 74
147 | 09
23 | 09
21 | 104 | 43
95 | 54
114 | | 600 | 30 | 27
39 | 128
186 | 142
203 | 148
216 | 21
30 | 21
28 | 123
176 | 132
191 | 143
208 | 24
33
37 | 22
29 | 143
204 | 150
214 | 159
232 | 42
55 | 31
42 | 147
212 | 158
233 | 164
240 | 27
38 | 22
32 | 116
168 | 105
157 | 126
186 | | 600
900
800 | 32
38 | 42
54 | 196
251 | 214
276 | 229
296 | 32
41 | 30
37 | 188
238 | 205
260 | 222
284 | 47 | 31
38 | 218
279 | 226
284 | 247
317 | 61
72 | 44
54 | 227
289 | 246
309 | 257
328 | 41
51 | 35
45 | 180
230 | 166
216 | 198
257 | | 1000 | 39
44 | 58
71 | 260
315 | 287
350 | 309
375 | 43
49 | 40
45 | 249
298 | 273
328 | 299
361 | 49
60 | 41
46 | 294
354 | 297
353 | 333
399 | 76
84 | 56
68 | 306
364 | 322
381 | 343
409 | 54
63 | 46
57 | 242
290 | 226
273 | 270
327 | | 1200 | 46
52
53 | 74
87
90 | 325
380
391 | 361
421
432 | 388
451
466 | 51
57
62 | 47
54
56 | 309
361
375 | 343
397
410 | 375
437
452 | 63
72
75 | 48
54
56 | 371
429
446 | 365
420
432 | 415
481
496 | 89
96
98 | 71
81
84 | 382
438
457 | 397
458
476 | 427
492
511 | 65
73
75 | 60
70
71 | 304
350
364 | 283
330
340 | 341
394
407 | | 1400 | 58
59 | 101 | 443
454 | 489
501 | 529
543 | 68
76 | 60
63 | 423
438 | 463
480 | 510
528 | 84
87 | 62
63 | 501
517 | 48 5
497 | 559
575 | 106
109 | 93
95 | 510
530 | 533
552 | 575
594 | 82
83 | 79
82 | 406
420 | 383
394 | 459
473 | | 1600 | 65
67 | 114 | 505
515 | 555
566 | 607
621 | 82
83 | 67
68 | 487
500 | 529
544 | 586
603 | 96
99 | 68
71 | 572
588 | 549
560 | 640
658 | 116
120 | 103
107 | 582
602 | 603
625 | 657
677 | 90
92 | 88
90 | 462
475 | 439
450 | 523
536 | | 1800 | 73
75 | 125
128 | 562
572 | 616
629 | 678
692 | 88
90 | 73
75 | 545
559 | 590
605 | 660
678 | 107
10 9 | 76
78 | 641
660 | 610
622 | 718
736 | 127
131 | 115 | 653
674 | 680
698 | 737
758 | 98
101 | 97
98 | 514
529 | 493
505 | 586
602 | | 2000 | 80
82 | 138
141 | 619
630 | 677
690 | 747
761 | 95
98 | 80
82 | 604
619 | 651
667 | 733
750 | 117
120 | 83
86 | 708
726 | 670
684 | 794
812 | 137
142 | 126
130 | 720
745 | 750
771 | 813
835 | 107
110 | 104
106 | 566
582 | 547
561 | 652
668 | | 2200 | 87
89 | 149 | 675
692 | 735
750 | 814
829 | 103
106 | 87
89 | 665
681 | 713
730 | 804
824 | 126
129 | 92
95 | 772
792 | 730
746 | 866
886 | 149
154 | 136
142 | 795
822 | 819
840 | 890
914 | 117
120 | 112
114 | 621
635 | 599
612 | 716
733 | | 2400 | 94
97 | 156
159 | 731
746 | 793
809 | 878
8 93 | 112
114 | 95
96 | 722
739 | 774
793 | 876
8 95 | 136
139 | 100
103 | 836
856 | 790
807 | 938
958 | 160
166 | 147
151 | 869
899 | 887
908 | 966
991 | 127
129 | 120
121 | 673
688 | 650
663 | 777
7 94 | | 2600 | 102
105 | 166
170 | 785
800 | 849
865 | 940
958 | 120
123 | 101 | 781
799 | 835
854 | 944
966 | 145
148 | 109
112 | 896
917 | 848
867 | 1008
1029 | ·172
177 | 158
162 | 943
970 | 952
976 | 1042
1068 | 136
138 | 128
130 | 723
740 | 703
716 | 837
855 | | 2800 | 111 | 177
180 | 840
854 | 904
920 | 1002
1021 | 128
131 | 109
110 |
837
857 | 895
915 | 1012
1035 | 155
158 | 117
120 | 955
977 | 907
928 | 1075
1100 | 183
188 | 168
172 | | 2 2 2 2 | 1115 | 144
146 | 136
138 | 774
794 | 751
766 | 895
914 | | 3000 | 120
123 | 186
190 | 892
911 | 961
983 | 1067
1090 | 137
139 | 115
117 | 893
914 | 954
976 | 1060
1105 | 165
167 | | 1015
1039 | | 1145
1171 | 194
201 | 1 <i>77</i>
182 | | 1078
1107 | 1187
1218 | 153
156 | 143
145 | 830
851 | 799
815 | 954
976 | | 3200 | 128
132 | 197
200 | 948
969 | 1021
1045 | 1135
1159 | 147
150 | 123
125 | 949
972 | 1013
1038 | 1148
1174 | 174
177 | | 1074
1099 | | 1214
1240 | 207
213 | | 1153
1187 | | 1259
1292 | 161
164 | 152
154 | 881
904 | | 1014 | | 3400 | 137
142 | 210 | 1002
1026 | 1080
1105 | 11 99
1226 | 156
158 | 131
134 | | | 1214
1241 | 183
186 | 148 | | 1110 | 1281
1308 | 218
224 | 198
202 | 1257 | | 1332
1365 | 169
173 | 161
163 | 934
960 | 915 | 1074
1100 | | 3600 | 147
152 | 219 | 1086 | | 1267
1296 | 164
166 | 141 | | 1159 | 1281
1311 | 194
197 | 159 | | 1170 | 1349
1378 | 230
236 | 213 | | 1294 | 1404
1439 | 1 <i>77</i>
181 | 169
172 | 989
1018 | 964 | 1136
1163 | | 3800 | 157
162 | 229 | 1144 | | 1335
1365 | 1 <i>7</i> 2
175 | 148 | 1152 | | 1349
1380 | 204
207 | 169 | | | 1418
1447 | 243
248 | | 1396 | 1326
1355 | 1476
1512 | 187
190 | | | 1013 | 1198
1226 | | 4000 | 167
172 | 238 | 1202 | 1289 | 1404
1434 | 181
185 | 156 | 1186
1214 | 1278 | 1418
1450 | 213
216 | 179 | 1349 | 1288 | 1487
1516 | 253
259 | 235 | 1468 | 1417 | 1549
1587 | 195
198 | 191 | 1133 | 1064 | 1259
1288 | | 4200 | 178
183 | 246 | 1240
1264 | 1320
1349 | 1475
1507 | 190
193 | 164 | | 1309
1338 | 1487
1520 | 223
226 | 189 | 1412 | 1347 | 1554
1585 | 265
270 | 246 | 1541 | 1448
1482 | 1623
1662 | 204
207 | 200 | 1192 | 1114 | 1320
1351 | | 4400 | 188
194 | 255 | 1294
1320 | 1381
1411 | 1545
1577 | 200
202 | 172 | | 1368
1397 | 1555
1590 | 232
236 | 200 | 1478 | 1404 | 1624
1656 | 276
282 | 257 | 1612 | 1513
1547 | 1697
1738 | 213
221 | 207 | 1257 | 1166 | 1383
1415 | | 4600 | 199
205 | | 1374 | 1472 | 1612
1646 | 208
210 | 180 | 1395 | | 1660 | 242
245 | 210 | 1544 | | 1694
1728 | 287
293 | 268 | 1643
1687 | 1612 | 1772
1816 | 226
238 | | | 1216 | 1447
1481 | | 4800 | 210
216 | 272 | 1430 | 1533 | 1681
1717 | 217
221 | 188 | 1457 | 1516 | 1695
1731 | 252
255 | 220 | 1612 | 1524 | 1763
1801 | 299
304 | 279 | 1761 | 1639
1677 | 1850
1896 | 242
253 | 224 | 1378 | 1270 | 1513
1548 | | 5000 | 221
227 | | | | 1752
1789 | 227
230 | 197 | | 1577 | 1765
1804 | 262
266 | 230 | 1682 | 1582 | 1836
1875 | 309
314 | 290 | 1836 | 1743 | 1930
1976 | 257
263 | | 1442 | 1322 | 1579
1617 | | 5200 | 232
238 | | 1515
1545 | 1623
1657 | 1825
1862 | 236
246 | | | 1604
1642 | 1839
1880 | 273
277 | 241 | 1752 | 1642 | 1911
1953 | 320
326 | 302 | 1914 | | 2009
2058 | 268
274 | 241 | 1507 | 1375 | 1648
1684 | | 5400 | 242
248 | | 1571
1602 | 1718 | 1896
1935 | 251
261 | 212 | 1653 | 1705 | 1913
1957 | 284
288 | 251 | 1822 | 1701 | 1987
2029 | 331
337 | 313 | 1993 | 1873 | 2090
2140 | 279
284 | 251 | | 1427 | 1716
1755 | | 5600 | 253
259 | | | 1781 | 1969
2010 | 265
270 | | | | 1990
2038 | 295
305 | 260 | 1902 | 1765 | 2063
2109 | 342
349 | | | 1898
1940 | 2171
2223 | 287
293 | 257
260 | 1640 | 1481 | 1786
1825 | | 5800 | 263
270 | 316 | 1714 | 1844 | 2044
2086 | 274
279 | 223
227 | 1743
1781 | | 2069
2115 | 311
318 | | | | 2143
2189 | 354
361 | 335 | 2158 | 2008 | 2255
2310 | 297
301 | 265
270 | | | 1856
1899 | | ć000 | 275
281 | 320 | 1739
1768 | | 2118
2158 | 284
290 | | | | 2148
2192 | 323
332 | | 2007
2053 | | | 366
377 | | 2184
2253 | | 2342
2399 | 306
310 | | 1734
1774 | | 1930
1977 | ## APPENDIX TABLE 28d # Detailed Follow-Up Load-Deflection Data, in Lb. and 1/1000 In. Patlets of Conventional Design | Test
Lnod | A | Pallet
B | No.
C | Ad1
D | E | , F | 'allet
B | No. 4
C | kd2
D | ε | A P | ailet
B | No. 4 | ¥43
D | ε | A | Paller
B | N₀.
C | Ad4
D | £ | A | Paliet
B | No.
C | Ad5
D | £ | |--------------|------------|-------------|------------|--------------|--------------|------------|-------------|--------------|--------------|-------------|------------|------------|--------------|--------------|------------|------------|-------------|------------|--------------|--------------|------------|-------------|------------|--------------|--------------| | 0 | 000 | | 200 | 12
13 | 06
08 | 22
25 | 36
41 | 67
73 | 32
34 | 13
14 | 79
88 | 58
66 | 75
84 | 10
12 | 16
27 | 57
70 | 69
83 | 67
82 | 13
15 | 07
08 | 60
68 | 57
66 | 62
71 | 09
12 | 05
08 | 41
53 | 68
86 | 59
74 | | 400 | 25 | 15 | 79 | 109 | 139 | 43 | 26 | 150 | 133 | 158 | 24 | 39 | 133 | 154 | 154 | 32 | 22 | 135 | 139 | 148 | 21 | 16 | 108 | 164 | 147 | | 400 | 30 | 16 | 90
141 | 120 | 152 | 45
54 | 28
40 | 160
219 | 145 | 170
245 | 27
40 | 48
57 | 147
205 | 170
238 | 169
242 | 43
57 | 30
38 | 151
210 | 155
221 | 166
237 | 24
33 | 18
25 | 121
173 | 179
252 | 161
233 | | 600 | 42
48 | 24
26 | 154 | 200 | 216
233 | 57 | 42 | 230 | 213
225 | 260 | 43 | 62 | 219 | 251 | 257 | 64 | 45 | 227 | 239 | 256 | 35 | 27 | 184 | 268 | 248 | | 800 | 56 | 33 | 201 | 260 | 295 | 65 | 53 | 284 | 290 | 331 | 55
57 | 71 | 273
287 | 317
333 | 328 | 75
79 | 52
57 | 282
299 | 296
314 | 320
341 | 43 | 35 | 236
252 | 340
358 | 319 | | | 62
71 | 35
42 | 213
258 | 274
333 | 312
373 | 67
73 | 57
67 | 297
349 | 304
368 | 347
415 | 57
68 | 75
83 | 340 | 397 | 344
410 | 87 | 65 | 353 | 373 | 402 | 46
52 | 36
44 | 306 | 425 | 336
402 | | 1000 | 74 | 44 | 272 | 348 | 388 | 76 | 71 | 364 | 381 | 431 | 70 | 87 | 356 | 414 | 427 | 89 | 68 | 369
421 | 388
447 | 419 | 54 | 46 | 321 | 443 | 421 | | 1200 | 83
87 | 51
54 | 318
330 | 406
423 | 449
466 | 83
85 | 80
84 | 412
425 | 446
460 | 498
514 | 81
84 | 97
100 | 408
423 | 484
500 | 495
511 | 99
101 | 75
78 | 443 | 463 | 483
502 | 60
63 | 54
56 | 375
391 | 512
531 | 487
506 | | 1400 | 94 | 60 | 375 | 479 | 525 | 93 | 93 | 474 | 523 | 580 | 94 | 107 | 472 | 561 | 577 | 110 | 84 | 492 | 528 | 565 | 68 | 62 | 442 | 600 | 572 | | | 97
104 | 53
71 | 380
427 | 498
555 | 537
599 | 95
103 | 97
105 | 487
531 | 537
596 | 596
662 | 97
108 | 111 | 489
538 | 578
638 | 595
662 | 113
121 | 89
94 | 509
558 | 544
595 | 584
643 | 71
76 | 64
71 | 457
511 | 620
684 | 591
660 | | 1600 | 109 | 73 | 441 | 571 | 616 | 104 | 109 | 546 | 612 | 680 | 111 | 122 | 551 | 654 | 678 | 125 | 98 | 576 | 611 | 663 | 79 | 73 | 526 | 703 | 678 | | 1800 | 115 | 80
84 | 489
503 | 624
637 | 676
694 | 112
114 | 117 | 590
605 | 670
686 | 742
760 | 121
125 | 130
134 | 600
615 | 714
732 | 743
761 | 132
136 | 103 | 626
655 | 660
676 | 720
743 | 84
87 | 79
82 | 579
597 | 763
785 | 742
762 | | 2000 | 127 | 90 | 547 | 690 | 751 | 122 | 130 | 650 | 744 | 821 | 134 | 142 | 661 | 789 | 821 | 143 | 112 | 701 | 720 | 795 | 93 | 89 | 647 | 843 | 822 | | 2000 | 131
136 | 93
99 | 563
603 | 705
753 | 769
821 | 123
128 | 133 | 664
707 | 760
815 | 838
897 | 139
147 | 145
153 | 674
719 | 806
861 | 839
898 | 147
153 | 115
120 | 720
766 | 739
784 | 814
866 | 95
101 | 92
97 | 667
714 | 865
918 | 844
901 | | 2200 | 139 | 102 | 626 | 769 | 841 | 130 | 146 | 725 | 835 | 917 | 152 | 156 | 734 | 879 | 917 | 157 | 124 | 786 | 805 | 886 | 103 | 99 | 732 | 938 | 922 | | 2400 | 144 | 109 | 665
682 | 814
831 | 890
910 | 136
136 | 155 | 767
814 | 887 | 974
1005 | 161
164 | 164
166 | 779
794 | 931
949 | 972
992 | 164
167 | 129
133 | 832
854 | 847
867 | 936
957 | 109
112 | 104
106 | 782
802 | 992
1012 | 980
1001 | | 0.40 | 147
161 | 111 | 724 | 877 | 960 | 141 | 166
174 | 851 | | 1057 | 173 | 174 | 836 | 996 | 1043 | 174 | 138 | 897 | 908 | 1005 | 117 | 111 | 846 | 1060 | 1052 | | 2600 | 163 | 121 | 742 | 896 | 983 | 143 | 178 | | 979 | | 177
185 | 177
184 | | 1018
1062 | | 177
183 | 142
147 | 918
959 | | 1026
1073 | 121
126 | 114
118 | | 1083 | | | 2800 | 166
168 | 127
131 | 776
792 | 937
956 | 1027
1048 | 153
155 | 185
188 | | 1021 | | 188 | 186 | | 1084 | | 186 | 150 | 983 | | 1096 | 131 | 122 | | 1155 | | | 3000 | 172 | 136 | 826 | 995 | 1092 | 165 | 195 | | 1086 | | 197 | 194
197 | | 1125 | | 193
196 | 156 | | 1021 | | 136
139 | 126 | | 1198 | 1200 | | | 174
185 | 141 | 846
884 | 1018 | | 167
175 | 199
205 | 1011 | 1105 | | 200
208 | 205 | | 1149 | | 202 | | | 1079 | | 144 | | | 1267 | | | 3200 | 186 | 150 | 903 | 1079 | 1187 | 179 | 208 | 1013 | 1156 | 1309 | 212 | | 1015 | | | 205 | | | 1102 | | 148 | | | 1297 | | | 3400 | 190
191 | 156
160 | | 1117 | | 186
190 | | 1043
1044 | | | 219
223 | |
1048
1073 | | | 212
215 | | | 1135 | | 153
156 | | | 1334
1365 | | | 3600 | 201 | 166 | 988 | 1177 | 1295 | 200 | 224 | 1075 | 1241 | 1437 | 230 | | 1105 | | | 221 | | | 1191 | | 161 | | | 1402 | | | | 202
206 | | | 1200 | | 206
212 | | 1041
1064 | | | 235
242 | | 1127
1161 | | | 224
231 | | | 1212 | | 164
168 | | | 1433 | | | 3600 | 208 | 179 | 1055 | 1259 | 1385 | 218 | 241 | 1053 | 1273 | 1606 | 246 | 239 | 1182 | 1409 | 1484 | 234 | 194 | 1324 | 1264 | 1437 | 172 | 164 | 1261 | 1501 | 1528 | | 4000 | 219 | | | 1294 | | 222
239 | 248
262 | 1075 | 1305 | | 252
257 | | 1215 | | | 241
244 | | | 1295 | | 175
179 | | | 1535
1570 | | | 4000 | 225 | | | 1354 | | 246 | 270 | 967 | 1268 | 1899 | 263 | 256 | 1271 | 1510 | 1593 | 251 | 207 | 1428 | 1344 | 1542 | 183 | 179 | 1352 | 1604 | 1639 | | 4200 | 227 | | | 1381 | | 252 | 276
28 I | | 1275
1303 | | 267
273 | | 1296
1324 | | | 256
263 | | | 1367
1395 | | 188
191 | | | 1638
1672 | | | 4400 | 236
238 | | | 1413 | | 262
270 | 287 | | 1312 | | 276 | | 1352 | | | 267 | 218 | 1528 | 1418 | 1639 | 194 | 195 | 1455 | 1709 | 1755 | | 4600 | 241 | | | 1472 | | 276 | 292 | | 1337 | | 293
288 | | 1381
1407 | | | 273
276 | | | 1444 | | 197
200 | | | 1741
1779 | 1790
1834 | | | 242
251 | | | 1502
1533 | | 283
290 | 299
305 | 1007 | 1342
1367 | | 295 | | 1437 | | | 282 | 233 | 1632 | 1494 | 1741 | 205 | 209 | 1553 | 1809 | 1869 | | 4800 | 252 | 225 | 1331 | 1564 | 1732 | 298 | 313 | | 1366 | | 301
307 | | 1466 | | | 285
292 | | | 1524
1551 | | 208
213 | | | 1849
1878 | 1914
1950 | | 5000 | 256
257 | | | 1593
1625 | | 304
314 | 318
327 | 1004
987 | 1390 | | 312 | | 1527 | | | 295 | | | 1578 | | 216 | | | 1917 | | | 5200 | 265 | 238 | 1417 | 1652 | 1837 | 320 | 332 | 1002 | 1411 | 2504 | 319 | | 1552 | | | 301 | | | 1602 | | 220 | | | 1946 | | | | 265
269 | | | 1686
1713 | | 331
336 | | 1000 | | | 323
331 | | 1584
1610 | | | 305
311 | | | 1631
1654 | | 224
227 | | | 1987
2014 | | | 5400 | 270 | 248 | 1490 | 1746 | 1943 | 347 | 355 | 1131 | 1486 | 2771 | 335 | 323 | 1641 | 1916 | 2060 | 315 | 260 | 1888 | 1683 | 1990 | 232 | 246 | 1820 | 2052 | 2165 | | 5600 | 279
279 | | | 1771 | | 353
364 | | 1148 | | | 343
348 | | 1669
1701 | | | 321
326 | | | 1707
1738 | | 236
240 | | | 2081 | | | **** | 283 | | | 1833 | | 370 | 372 | 1164 | 1544 | 2771 | 355 | 339 | 1724 | 2004 | 2169 | 333 | 273 | 1997 | 1760 | 2097 | 244 | 262 | 1916 | 2151 | 2277 | | 5800 | 284 | 265 | 1599 | 1867 | 2087 | 381 | | 1173
1198 | | | 361
368 | | 1760
1784 | | | 339
344 | | | 1791
1814 | | 249
251 | | | 2194
2222 | | | 6000 | 293
295 | | | 1891
1925 | | 389
400 | | 1207 | | | 374 | | 1817 | | | 350 | | | 1845 | | 256 | | | 2263 | | APPENDIX TABLE 28e Detailed Follow-Up Load-Deflection Data, in Lb. and 1/1000 In. Pallets of Improved Design | Test
Load | A | Pailet
B | No. !
C | Se 1
D | E | A | Polle: | No. | Ba2
D | Ε | A | Pailet
8 | No.
C | 8 -3 | E | A | Pallet
8 | No.
C | Ba4
O | E | A 1 | Pallet
8 | Na. E
C | la5
D | E | |--------------|------------|-------------|--------------|------------|--------------|------------|------------|--------------|------------|--------------|------------|-------------|------------|--------------|--------------|------------|-------------|------------|--------------|--------------|------------|-------------|--------------------|---------------|--------------| | 0 | 000 | | 200 | 10 | 07 | 39 | 42
47 | 47 | 10
12 | 14 | 40
46 | 42
46 | 46
52 | 00
00 | 06
12 | 38
58 | 35
49 | 41 | 10 | 09 | 39
46 | 55 | 51 | 08 | 05 | 36 | 37 | 40 | | | 21 | 08
18 | 45
92 | 92 | 54
107 | 24 | 39 | 98 | 90 | 107 | 08 | 20 | 103 | 97 | 61
113 | 11
25 | 10
24 | 94 | 63
128 | 59
122 | 09
21 | 06
14 | 44
93 | 45
96 | 49
105 | | 400 | 24 | 20 | 99 | 99 | 116 | 27 | 45 | 109 | 96 | 117 | 09 | 23 | 110 | 104 | 123 | 27 | 26 | 101 | 137 | 131 | 24 | 16 | 101 | 104 | 115 | | 600 | 34
35 | 29 | 146 | 145 | 169 | 40
43 | 57
60 | 156 | 135 | 167
176 | 17
19 | 30
33 | 153 | 149
157 | 172
183 | 38
41 | 38
41 | 142 | 203 | 190 | 36 | 24
25 | 149 | 157 | 173 | | | 46 | 31
41 | 156
199 | 194 | 178
230 | 57 | 73 | 166
212 | 182 | 229 | 28 | 41 | 163
204 | 198 | 232 | 51 | 52 | 151 | 214
276 | 201
261 | 38
48 | 33 | 158
200 | 166
216 | 182
237 | | 800 | 46 | 43 | 209 | 203 | 242 | 65 | 77 | 225 | 190 | 243 | 31 | 43 | 214 | 207 | 245 | 53 | 55 | 202 | 287 | 273 | 51 | 35 | 209 | 225 | 249 | | 1000 | 57
57 | 52
54 | 250
260 | 245
254 | 291
303 | 76
83 | 89
94 | 257
283 | 231 | 292
308 | 39
43 | 49
52 | 255
266 | 248
258 | 292
303 | 64
68 | 65
69 | 241
252 | 350
362 | 332
344 | 60
63 | 42
43 | 248
258 | 273
284 | 301
313 | | 1200 | 68 | 63 | 300 | 295 | 353 | 93 | 106 | 325 | 279 | 357 | 51 | 58 | 307 | 296 | 350 | 76 | 79 | 290 | 420 | 399 | 73 | 51 | 297 | 332 | 364 | | 1200 | 69 | 65 | 310 | 304 | 363 | 99 | 112 | 339 | 289 | 372 | 53 | 60 | 319 | 307 | 362 | 79 | 83 | 301 | 432 | 412 | 76 | 52 | 306 | 342 | 377 | | 1400 | 78
79 | 75
79 | 350
361 | 344
353 | 410
421 | 110 | 123
127 | 379
396 | 330
342 | 418
432 | 62
65 | 66
68 | 358
370 | 346
358 | 405
416 | 88
91 | 93
97 | 339
351 | 49 I
503 | 465
479 | 84
88 | 60
16 | 343
353 | 388
398 | 427
437 | | 1600 | 89 | 87 | 400 | 391 | 468 | 121 | 142 | 437 | 386 | 482 | 73 | 75 | 411 | 397 | 459 | 100 | 106 | 388 | 556 | 530 | 97 | 68 | 388 | 444 | 487 | | 1000 | 91
100 | 92
101 | 411 | 402
441 | 481
526 | 123
134 | 146
160 | 453
492 | 399
445 | 498
547 | 76
86 | 76
82 | 422
461 | 407
443 | 469
511 | 103 | 117 | 402
438 | 575
627 | 546
598 | 100
109 | 69
75 | 398
432 | 455
497 | 501
547 | | 1800 | 101 | 105 | 461 | 452 | 539 | 134 | 165 | 510 | 458 | 564 | 91 | 85 | 474 | 456 | 524 | 115 | 132 | 454 | 644 | 615 | 112 | 76 | 443 | 508 | 561 | | 2000 | 107 | 113 | 495 | 488 | 583 | 142 | 176 | 551 | 500 | 613 | 98 | 90 | 511 | 489 | 566 | 124 | 140 | 490 | 688 | 663 | 120 | 84 | 47E | 547 | 606 | | 2000 | 109
118 | 118 | 507
543 | 499
536 | 596
641 | 144 | 183
197 | 571
609 | 516
558 | 632
682 | 103
112 | 92
97 | 524
561 | 502
537 | 580
623 | 128
136 | 143
150 | 504
539 | 700
744 | 678
725 | 125
132 | 87
92 | 487
518 | 558
595 | 620
662 | | 2200 | 120 | 131 | 555 | 547 | 656 | 157 | 202 | 626 | 570 | 699 | 114 | 98 | 576 | 553 | 638 | 141 | 153 | 555 | 756 | 742 | 136 | 93 | 530 | 607 | 676 | | 2400 | 130 | 139 | 591 | 583 | 698 | 164 | 213 | 665 | 610 | 746 | 123 | 103 | 613 | 585 | 680 | 150 | 159 | 591 | 778 | 785 | 143 | 99 | 560 | 641 | 716 | | | 131
138 | 142 | 604
637 | 595
629 | 713
752 | 167
179 | 210 | 684
719 | 626
665 | 763
809 | 125
134 | 106 | 626
660 | 596
628 | 694
733 | 154
162 | 161
169 | 610
646 | 813
854 | 804
846 | 148
156 | 101 | 573
604 | 654
687 | 731
769 | | 2600 | 140 | 153 | 651 | 642 | 766 | 180 | 236 | 738 | 679 | 827 | 139 | 113 | 683 | 642 | 753 | 167 | 172 | 667 | 870 | 866 | 159 | 108 | 617 | 700 | 785 | | 2800 | 149 | 159 | 684 | 674 | 804
821 | 187 | 246
252 | 770
790 | 714
732 | 867
888 | 147
151 | 119
120 | 715
731 | 672 | 790
804 | 175
179 | 177
180 | 698
717 | 906
922 | 905
924 | 166
171 | 119
118 | 651
670 | 733 | 822 | | | 150
157 | 164 | 698
729 | 689
720 | 856 | 188
194 | 260 | 819 | 766 | 925 | 158 | 125 | 766 | 686
714 | 840 | 186 | 186 | 747 | 958 | 961 | 177 | 123 | 695 | 748
782 | 838
873 | | 3000 | 159 | 175 | 745 | 735 | 874 | 199 | 267 | 839 | 785 | 946 | 163 | 127 | 784 | 729 | 859 | 192 | 189 | 769 | 977 | 981 | 180 | 124 | 711 | 796 | 892 | | 3200 | 170
172 | 180
185 | 780
798 | 767
785 | 911
930 | 205
209 | 273
279 | 867
888 | 819
840 | 985
1009 | 171
175 | 131 | 815
832 | 756
776 | 892
911 | 200
204 | 196
197 | | | 1018 | 186
194 | 128
131 | 7 38
761 | 825
842 | 924
946 | | | 179 | 191 | 825 | 814 | 962 | 215 | 286 | 913 | | 1042 | 182 | 139 | 860 | 802 | 942 | 210 | 202 | | | 1073 | 200 | 136 | 785 | 868 | 976 | | 3400 | 181 | 196 | 843 | 832 | 983 | 219 | 292 | 934 | | 1064 | 186 | 142 | 880 | 821 | 962 | 215 | 206 | | | 1098 | 203 | 137 | 804 | 887 | 998 | | 3600 | 190
192 | 202
206 | 872
890 | 861
882 | | 225
230 | 298
303 | 958
981 | | 1099
1124 | 191
196 | 147
150 | 903
928 | 847
872 | 994
1017 | 221
227 | 211
216 | | 1119 | | 208
216 | 141
145 | 829
854 | | 1029
1056 | | 2000 | 201 | 212 | 920 | 908 | 1070 | 235 | 312 | 1006 | 973 | 1159 | 202 | 156 | 958 | 896 | 1047 | 232 | 221 | 957 | 1172 | 1190 | 221 | 149 | 876 | 956 | 1084 | | 3800 | 203 | 216 | 940 | 931 | 1094 | 245 | 317 | 1035 | | 1187 | 207 | 158 | 985 | 915 | | 238 | 224
229 | | 1195 | | 226 | 151 | 898
920 | | 1108 | | 4000 | 210
212 | 222
227 | 963
985 | 957
980 | 1124 | 251
254 | 322
328 | 1058
1084 | 1023 | | 214
218 | 163
166 | 1010 | | 1099 | 245
251 | | | 1223
1248 | | 231
237 | 155
159 | | 100 I
1022 | 1135
1160 | | 4200 | 221 | 232 | 1014 | 1007 | 1180 | 262 | 333 | 1112 | 1077 | 1281 | 224 | 171 | 1052 | 985 | 1151 | 258 | 237 | 1064 | 1278 | 1303 | 243 | 163 | 966 | 1046 | 1 188 | | 4200 | 223 | 238
243 | 1038
 1030 | 1206 | 268
274 | 338
345 | | 1100 | | 229
235 | 174
179 | 1074 | 1008 | | 264
271 | | | 1302
1330 | | 246
251 | 156 | 987
1015 | | 1214
1242 | | 4400 | 230
232 | | 1089 | | | 279 | 351 | | 1153 | | 239 | | 1122 | 1053 | | 275 | | | 1355 | | 254 | | 1039 | | 1270 | | 4600 | 239 | 253 | 1114 | 1105 | 1291 | 286 | 358 | | 1180 | | 245 | | | 1076 | | 282 | | | 1385 | | 263 | | | 1135 | | | | 241
249 | | 1139 | | 1318 | 290
298 | 364
369 | 1236
1258 | 1206 | | 250
256 | | 1171 | 1102 | | 290
296 | | | 1410 | 1450
1480 | 267
271 | | 1090
1110 | | 1327
1354 | | 4800 | 251 | 268 | 1190 | 1182 | 1374 | 303 | 375 | 1287 | 1258 | 1485 | 261 | 200 | 1223 | 1150 | 1338 | 302 | 267 | 1265 | 1467 | | 276 | 189 | 1133 | 1205 | 1381 | | 5000 | 259 | | 1216 | | 1404 | 310 | 380
388 | | 1283 | | 267
270 | | | 1170
1195 | | 309
315 | | 1289 | | 1541
1571 | 284
287 | | 1160
1184 | | 1409
1438 | | | 261
268 | | 1240
1265 | | 1431 | 314
321 | 392 | | 1330 | | 276 | | | 1217 | | 321 | | 1346 | | 1602 | 293 | | 1204 | | 1462 | | 5200 | 271 | 289 | 1289 | 1282 | 1489 | 327 | 397 | 1389 | 1363 | 1609 | 280 | | | 1239 | | 327 | | | | 1634 | 299 | | 1234 | | 1494 | | 5400 | 278
280 | | 1313
1337 | | 1516
1544 | 334
339 | 401
407 | 1411 | 1387 | | 286
290 | | | 1259
1282 | | 333
339 | | 1435 | | 1663
1694 | 303
307 | | 1253
1276 | | 1520
1549 | | | 287 | | 1360 | | 1572 | 346 | | 1461 | | | 295 | 230 | 1388 | 1303 | 1553 | 345 | 300 | 1457 | 1662 | 1724 | 313 | 216 | 1302 | 1364 | 1578 | | 5600 | 290 | | 1396 | | 1608 | 352 | | 1492 | | | 301 | | | 1326 | | 353
358 | | | 1691 | | 316 | | 1327
1352 | | 1610 | | 5800 | 296
298 | | 1419 | | 1634 | 359
364 | 423
429 | 1511 | | 1758
1792 | 305
310 | | | 1348
1374 | 1623
1657 | 358
364 | | | 1719
1747 | 1784
1819 | 322
326 | | 1376 | | 1638
1669 | | 4000 | 306 | 326 | 1470 | 1453 | 1694 | 371 | 435 | 1563 | 1538 | 1820 | 315 | 249 | 1506 | 1395 | 1684 | 370 | 317 | 1574 | 1775 | 1847 | 332 | 233 | 1400 | 1456 | 1695 | | 6000 | 308 | 331 | 1494 | 1481 | 1724 | 376 | 441 | 1593 | 1565 | 1856 | 320 | 254 | 1530 | 1415 | 1721 | 377 | 320 | 1607 | 1804 | 1882 | 335 | 237 | 1426 | 1481 | 1727 | APPENDIX TABLE 28F #### Detailed Follow-Up Load-Deflection Data, in Lb., and 1/1000 In. Pollets of Improved Design | Ţe st | | | No.8 | | | | | No. | | _ | | Pailet | | | | P | | No. B | | | | Pallet | | | | |--------------|-----------------|------------|----------------------|------------------------|--------------|------------|------------|------------|---------------|--------------|------------|------------|------------|--------------|------------|------------|------------|------------|--------------|--------------|------------|------------|----------------------|------------|--------------| | Lood | A | 8 | c | D | Ε | A | 8 | C | D | Ε | A | 8 | С | D | £ | A | В | c | D | E | A | В | C | D | E | | 0
200 | C00 | 000 | 000
43 | 000
46 | 000
40 | 000 | 000 | 000
39 | 000
48 | 000
46 | 000 | 10 | 000
39 | 000
54 | 000
54 | 000
07 | 000
07 | 000
35 | 000
30 | 000
35 | 000 | 000
05 | 000
49 | 000
16 | 000
46 | | 200 | 13 | 15 | 49 | 52 | 46 | 16 | 18 | 49 | 60 | 60 | 15 | 11 | 45 | 60 | 61 | 08 | 09 | 45 | 38 | 44 | 13 | 06 | 58 | 22 | 54 | | 400 | 24
28 | 30
32 | 98
106 | 105 | 105
115 | 26
29 | 31
37 | 97
106 | 117
127 | 117
133 | 30
35 | 23
24 | 93
101 | 125
134 | 125
136 | 18
23 | 21
24 | 94
103 | 90
98 | 100
109 | 26
30 | 16
18 | 115
125 | 69
76 | 113
123 | | 600 | 40
46 | 45
49 | 152
164 | 167
177 | 172
190 | 39
41 | 46
52 | 147
156 | 178
188 | 184
195 | 48
54 | 36
38 | 147
156 | 194
203 | 197
208 | 30
32 | 36
38 | 150
159 | 148
157 | 163
173 | 41
43 | 27
29 | 180
191 | 122
129 | 179
188 | | 800 | 56
64 | 58
62 | 206
219 | 224
234 | 238
254 | 51
53 | 60
65 | 197
206 | 235
246 | 246
257 | 62
65 | 49
51 | 195
204 | 257
267 | 265
275 | 41
43 | 49
52 | 208
218 | 210
220 | 230
241 | 54
57 | 38
39 | 241
251 | 172
182 | 243
256 | | 1000 | <i>77</i>
85 | 70
73 | 262 | 280
291 | 303
318 | 62
65 | 73
77 | 246
256 | 293
304 | 306
320 | 72
76 | 63
65 | 240
247 | 323
335 | 331 | 52
55 | 63
67 | 265
279 | 271
284 | 298
312 | 66
71 | 49
51 | 301
314 | 224 | 309
321 | | 1200 | 96
103 | 82
85 | 313
326 | 336
347 | 364
381 | 73
75 | 87
93 | 295
305 | 350
361 | 369
381 | 83
87 | 76
79 | 282
290 | 386
399 | 394
405 | 64
66 | 76
79 | 328
342 | 332
343 | 369
383 | 79
83 | 61 | 364
376 | 276
385 | 375
386 | | 1400 | 113 | 93
96 | 364
377 | 393
405 | 424
440 | 82
85 | 102 | 344
347 | 405
418 | 429
535 | 93
98 | 90
92 | 326
335 | 454
468 | 457
470 | 72
76 | 87
93 | 389
405 | 391
403 | 435
448 | 92
95 | 72
73 | 422
433 | 324
333 | 434
445 | | 1600 | 128 | 103 | 411
424 | 450 | 483
498 | 93 | 117 | 396 | 462 | 583 | 104 | 103 | 369 | 519 | 520 | 83 | 100 | 451 | 450 | 500 | 104 | 82 | 477 | 371 | 492 | | 1800 | 142 | 114 | 457 | 462
503 | 542 | 96
103 | 125
135 | 408
446 | 476
518 | 599
645 | 108
114 | 106
117 | 379
412 | 533
578 | 532
580 | 88
95 | 110 | 468
510 | 463
511 | 514
564 | 107
117 | 84
94 | 489
531 | 381
418 | 503
550 | | | 146
154 | 118 | 468
501 | 515
552 | 560
597 | 106
113 | 140 | 461
496 | 532
572 | 662
704 | 128
135 | 120 | 427
460 | 595
636 | 596
641 | 100
106 | 114 | 525
565 | 525
568 | 577
626 | 120
128 | 95
104 | 543
585 | 428
465 | 561
607 | | 2000 | 158 | 127 | 512 | 561 | 611 | 117 | 152 | 511 | 587 | 722 | 141 | 131 | 469 | 650 | 654 | 112 | 123 | 580 | 582 | 642 | 132 | 106 | 599 | 476 | 621 | | 2200 | 166
171 | 134
137 | 546
561 | 5 99
613 | 651
668 | 124
128 | 161
164 | 545
561 | 626
643 | 763
780 | 147
151 | 141 | 501
512 | 692
708 | 700
714 | 118
121 | 129
132 | 621
634 | 623
635 | 689
703 | 140
144 | 117 | 639
653 | 513
523 | 666
681 | | 2400 | 178
182 | 144
147 | 593
606 | 648
661 | 706
726 | 134
139 | 172
177 | 595
614 | 678
695 | 820
837 | 162
171 | 154
157 | 545
562 | 747
766 | 759
775 | 127
131 | 138
142 | 673
587 | 676
690 | 747
763 | 152
156 | 125
126 | 692
706 | 558
569 | 725
739 | | 2600 | 189
193 | 154
157 | 637
651 | 696
711 | 763
779 | 146
149 | 185
190 | 648 | 731
747 | 876
893 | 178
186 | 166
169 | 594
609 | 802
819 | 815
831 | 136
139 | 147
150 | 721
737 | 727
742 | 804
820 | 164
169 | 134
136 | 744
764 | 604
616 | 780
796 | | 2800 | 200
204 | 164
168 | 681
698 | 744
761 | 815
836 | 156
161 | 197 | 700
717 | 783
797 | 930
949 | 196
206 | 179
183 | 640
657 | 855
872 | 871
887 | 145
148 | 155
158 | 771
787 | 778
794 | 859
873 | 177
190 | 142 | 799
823 | 646
660 | 833
850 | | 3000 | 210 | 175
178 | 725
742 | 792
809 | 867
888 | 166 | 207 | 748
768 | 830 | 985
1004 | 212 | 191 | 684
700 | 907
927 | 925
944 | 154
156 | 164 | 821
839 | 829
847 | 914
932 | 197
206 | 156
158 | 858
880 | 692
706 | 888
906 | | 3200 | 226
228 | 183 | 772
789 | 841 | 920
944 | 176 | 218 | 797 | 878 | 1038 | 234 | 205 | 728 | 960 | 981 | 162 | 172 | 868 | 278 | 967
990 | 214 | 163 | 913 | 735
750 | 942 | | | 234 | 194 | 813 | 888 | 972 | 180
185 | 224 | 819
848 | | 1061
1094 | 245
251 | 208
216 | 746
772 | | 1001 | 166
172 | 176
181 | 887
914 | 898
928 | 1023 | 217
224 | 167
172 | 934
966 | 776 | 962
995 | | 3400 | 237 | 199 | 832 | 908 | 998 | 188 | 236 | 871 | 948 | 1119 | 257 | 220 | 790 | 1032 | 1055 | 184 | 183 | 941 | 952 | 1050 | 227 | 175 | 988 | 792 | 1017 | | 3600 | 243
247 | 204
210 | 856
876 | | 1026
1050 | 193
197 | 241
246 | 897
922 | | 1150
1175 | 265
271 | 227
231 | 817
837 | 1064
1085 | 1090 | 189
191 | 188
192 | 966
986 | | 1081
1102 | 232
237 | 183
186 | 1020 | | 1051
1073 | | 3800 | 254
258 | 216 | 901 | 983
1004 | 1078 | 201
205 | 252
258 | 946
972 | 1025
1046 | | 278
282 | 241
243 | | 1115
1137 | | 196
198 | | | 1030
1050 | 1133 | 243
247 | 191
197 | | | 1105
1128 | | 4000 | 264 | 226 | 945 | 1032 | 1130 | 209 | 262 | 995 | 1073 | 1256 | 290 | 251 | 904 | 1164 | 1201 | 203 | 207 | 1056 | 1075 | 1185 | 253 | 201 | 1127 | 903 | 1159 | | | 268
273 | 231 | | 1051 | | 212
217 | | | 1095 | | 294
299 | 254
262 | | 1185 | | 207
213 | | | | 1207
1236 | 255
262 | 205 | 1148 | | 1182
1214 | | 4200 | 278 | 241 | 1012 | 1097 | 1207 | 221 | 279 | 1073 | 1144 | 1334 | 303 | 265 | 966 | 1236 | 1275 | 216 | 220 | 1124 | 1146 | 1259 | 265 | 216 | 1201 | 963 | 1237 | | 4400 | 284
288 | | 1034
1056 | 1144 | 1235
1257 | 225
230 | 289 | | 1192 | | 312
315 | | 1013 | 1263
1285 | 1331 | 221
225 | 230 | 1171 | 1193 | 1285
1310 | 271
274 | | 1250 | 1005 | 1265
1288 | | 4600 | 294
298 | | 1078
11 00 | | | 234
238 | | | 1216 | | 320
325 | | | 1310
1334 | | 230
235 | | | 1217
1240 | | 281
294 | | 1277
1 304 | | 1316
1341 | | 48 00 | 304
308 | | 1123 | | | 242
246 | | | 1265 | | 332
336 | | | 1360 | 1413 | 239
244 | | |
1264
1289 | 1389
1415 | 291
295 | | | | 1369
1396 | | 5000 | 313 | | 1167 | | | 251
254 | | | 1315 | | 342
347 | | | 1407 | | 249
254 | | | 1313 | | 301
305 | | 1382
1406 | | 1425
1450 | | 5200 | 324
328 | 287 | 1212 | 1307 | | 259
262 | 324 | 1299 | 1363 | 1572 | 351
355 | 312 | 1158 | 1456 | | 260
264 | 262 | 1337 | 1360 | 1495 | 312 | 257 | | 1159 | | | 5400 | 334
338 | 298 | 1256 | 1352 | 1499 | 266 | 335 | 1351 | 1411 | 1628 | 364 | 323 | 1204 | 1505 | 1575 | 269 | 271 | 1382 | | 1548 | 322
325 | 265 | 1484 | 1199 | 1531
1557 | | | 338
343 | | 1278
1298 | | 1524 | 270
274 | | | 1437.
1459 | | 368
373 | | | 1555 | | 273
279 | | | 1455 | | 331 | | | 1244 | | | 5600 | 347 | 313 | 1322 | 1420 | 1580 | 277 | 350 | 1434 | 1487 | 1716 | 377 | 337 | 1262 | 1582 | 1657 | 284 | 286 | 1456 | 1481 | 1629 | 335 | 282 | 1550 | 1265 | 1615 | | 5800 | 353
358 | | 1343
1370 | | 1606
1634 | 282
285 | | | 1510
1538 | 1741
1776 | 385
388 | | | 1605
1632 | 1686 | 289
295 | | | | 1655
1685 | 342
345 | | 1587
1614 | 1306 | 1642
1670 | | 6000 | 364 | 330 | 1390 | 1492 | 1660 | 290 | 366 | 1513 | 1560 | 1801 | 393 | 353 | 1322 | 1656 | 1741 | 299 | 300 | 1526 | 1553 | 1709 | 352 | 295 | 1640 | 1326 | 1697 | | ~~~ | 368 | 334 | 1417 | 1516 | 1690 | 293 | 372 | 1545 | 1586 | 1835 | 398 | 358 | 1340 | 1683 | 1770 | 304 | 304 | 1552 | 1579 | 1739 | 356 | 299 | 1670 | 1349 | 1/25 | # APPENDIX TABLE 28g # Detailed Follow-Up Load-Deflection Data, in Lb. and 1/1000 In. Pallets of Improved Design | Test
Lood | A | oilet
B | No. f | Be I
D | E | A | Paliet
B | No. | Bc2
D | E | A | 'aliet
B | No. 1 | 3 D | Ε | A | Paliet
8 | No. 1 | 8e4
D | E | A | Paile: | N₀.
C | Bc5
D | E | |--------------|-------------------|------------|----------------------|--------------|----------------------|--------------------|-------------|--------------|--------------|--------------|------------|-------------|--------------|--------------|--------------------|------------|-------------|------------|--------------|--------------|------------|------------|--------------|--------------|--------------| | 0 | 000 | | 200 | 10 | 80
80 | 39
42 | 55
59 | 54
57 | 00 | 07
08 | 08
15 | 43
51 | 44
52 | 08
10 | 08
11 | 32
37 | 45
53 | 37
43 | 12
17 | 60
11 | 32
45 | 18
30 | 24
38 | 10
12 | 10 | 41
50 | 49
60 | 49
60 | | 400 | 23
25 | 18
20 | 85
93 | 114 | 114 | 05
06 | 19
21 | 65
73 | 103
112 | 110
120 | 23
26 | 24
27 | 77
85 | 117
126 | 100 | 32
36 | 19
24 | 89
100 | 97
98 | 92
104 | 24
25 | 29
31 | 101 | 120
128 | 124
134 | | 600 | 37
38 | 30
31 | 132 | 177
186 | 177
187 | 18
23 | 32
35 | 123 | 164
175 | 177
189 | 38
41 | 38
41 | 123 | 186
196 | 163
172 | 49
52 | 33
37 | 141 | 153
162 | 157
168 | 36
38 | 47
50 | 159
167 | 188
197 | 197
207 | | 800 | 48
50 | 41 | 178 | 236 | 239
250 | 38
43 | 46
49 | 178 | 226
238 | 249
264 | 52
56 | 52
54 | 171 | 254
263 | 226
235 | 63
67 | 45
49 | 189 | 216 | 218 | 49
53 | 65
71 | 216 | 255
266 | 271
282 | | 1000 | 58 | 52 | 223 | 294 | 300 | 61 | 59 | 236 | 292 | 323 | 68 | 65 | 217 | 316 | 289 | .77
82 | 57 | 233 | 279 | 282 | 65 | 82 | 271 | 325 | 342 | | | 60
69 | 53
62 | 231
266 | 304
351 | 311
360 | 68
82 | 63
73 | 248
290 | 306
356 | 339
394 | 74
88 | 70
78 | 230
267 | 328
379 | 301
351 | 92 | 61
69 | 244
277 | 290
339 | 295
344 | 68
79 | 87
97 | 281
324 | 336
393 | 353
411 | | 1200 | 71 | 64 | 274 | 362 | 371 | 87 | 77 | 301 | 370 | 409 | 93 | 82 | 279 | 391 | 364 | 96 | 74 | 290 | 352 | 359 | 83 | 102 | 334 | 406 | 424 | | 1400 | 79
82 | 72
74 | 309
319 | 407
419 | 419
431 | 98
103 | 86
91 | 342
353 | 415
429 | 463
478 | 104 | 88
90 | 314
325 | 439
451 | 411
424 | 106 | 82
85 | 323
335 | 402
416 | 407
420 | 93
96 | 113 | 376
386 | 462
473 | 460
492 | | 1600 | 88 | 82 | 355 | 465 | 478 | 117 | 99 | 394 | 474 | 531 | 121 | 97 | 362 | 503 | 472 | 120 | 93 | 368 | 466 | 468 | 107 | 126 | 426 | 523 | 547 | | | 90
101 | 84
92 | 365
401 | 479
524 | 490
539 | 122
131 | 104 | 407
446 | 489
531 | 548
599 | 128 | 101 | 375
411 | 517
569 | 4 85
535 | 125
136 | 97
105 | 381
413 | 482
533 | 483
530 | 110 | 131 | 436
476 | 535
582 | 561
614 | | 1800 | 103 | 95 | 411 | 536 | 550 | 136 | 117 | 459 | 544 | 615 | 146 | 111 | 425 | 582 | 543 | 141 | 110 | 425 | 550 | 546 | 125 | 145 | 487 | 596 | 628 | | 2000 | 109
112 | 101 | 446
457 | 578
590 | 596
609 | 145
150 | 125 | 497
509 | 586
599 | 665
680 | 157
165 | 117 | 460
476 | 629
646 | 594
611 | 150 | 117 | 456
468 | 598
613 | 590
605 | 134
139 | 156
158 | 525
536 | 639
651 | 678
691 | | 2200 | 123 | 110 | 492 | 632 | 657 | 161 | 136 | 546 | 640 | 727 | 175 | 128 | 506 | 691 | 658 | 164 | 128 | 500 | 660 | 653 | 150 | 167 | 573 | 691 | 736 | | | 125
132 | 112 | 503
536 | 645
683 | 671
714 | 165
175 | 139 | 561
596 | 653
691 | 744
788 | 180
190 | 131
137 | 520
553 | 706
751 | 674
720 | 168
177 | 131 | 512
541 | 678
721 | 668
712 | 153
165 | 171
180 | 582
618 | 700
741 | 747
792 | | 2400 | 134 | 120 | 549 | 698 | 729 | 178 | 149 | 611 | 705 | 806 | 196 | 140 | 566 | 768 | 736 | 180 | 143 | 554 | 737 | 730 | 168 | 183 | 630 | 753 | 804 | | 2600 | 145 | 127
130 | 582
594 | 737
752 | 773
788 | 192
196 | 157
160 | 650
666 | 744
759 | 851
370 | 205
211 | 148 | 598
614 | 811
829 | 780
797 | 128
193 | 150
155 | 583
597 | 776
794 | 769
788 | 177
183 | 192
195 | 663
678 | 787
799 | 845
859 | | 2000 | 153 | 136 | 628 | 788 | 827 | 204 | 166 | 699 | 793 | 909 | 218 | 158 | 644 | 867 | 837 | 200 | 161 | 625 | 831 | 826 | 191 | 204 | 710 | 832 | 898 | | 2800 | 156 | 139 | 641 | 801 | 843 | 207 | 170
177 | 715
751 | 808
843 | 929
969 | 224
232 | 162
168 | 660
687 | 887
924 | 856
894 | 205
211 | 165
171 | 640
667 | 848
882 | 845
880 | 194
203 | 207
217 | 725
756 | 846
879 | 914
952 | | 3000 | 162
165 | 145 | 673
692 | 836
852 | 882
900 | 220
224 | 181 | 769 | 860 | 991 | 232 | 172 | 702 | 943 | 912 | 216 | 175 | 684 | 900 | 900 | 207 | 221 | 774 | 895 | 971 | | 3200 | 173 | 154 | 722 | 886 | 938 | 231 | 188 | 799 | | 1028 | 246 | 186 | 735 | 978 | 951
972 | 222 | 181 | 710 | 933 | 933 | 215 | 229 | 803 | | 1008 | | | 175
181 | 156
163 | 738
765 | 904
935 | 957
991 | 235
245 | 192 | 819
851 | | 1050
1087 | 252
260 | 189
195 | | 1001
1034 | | 227
234 | 186
191 | 728
752 | 952
982 | 955
986 | 221
230 | 234
241 | 826
853 | | 1031
1067 | | 3400 | 184 | 166 | 782 | 955 | 1011 | 249 | 202 | 873 | | 1111 | 266 | 199 | | 1056 | | 238 | 196 | | | 1007 | 235 | 246 | 876 | | 1091 | | 3600 | 192
195 | 173
176 | 812
828 | | 1048
1067 | 256
260 | 209
214 | 899
921 | 1007 | 1146 | 273
278 | 210
213 | | 1091 | | 244
248 | 200
205 | | | 1037
1059 | 245
250 | 253
258 | | 1029
1053 | | | 3800 | 200 | 183 | 854 | 1036 | 1101 | 271 | 221 | 951 | 1034 | 1207 | 284 | 218 | 863 | 1146 | 1119 | 256 | 210 | 838 | 1076 | 1089 | 259 | 268 | 961 | 1081 | 1187 | | 3800 | 204
213 | 187
193 | | 1057 | | 275
281 | 227
232 | | 1056
1082 | | 290
296 | 221 | | 1168 | | 262
268 | 214 | | 1097 | | 267
276 | 273 | | 1104 | | | 4000 | 221 | 195 | | 1109 | | 284 | 237 | 1016 | | | 301 | 232 | | 1221 | | 273 | 223 | 900 | 1146 | 1164 | 282 | 287 | 1040 | 1156 | 1274 | | 4200 | 229
239 | 202
207 | | 1138
1162 | 1213 | 295
298 | | 1046 | | | 308
312 | 238
241 | | 1253
1277 | | 279
284 | 228
232 | | 1171 | | 290
296 | 295 | 1066 | 1183
1207 | 1305 | | | 245 | 212 | | 1188 | | 303 | | 1089 | | | 319 | 251 | | 1308 | | 291 | 238 | | 1217 | | 304 | | | 1235 | | | 4400 | 252 | | 1016 | | | 308 | | 1111 | | | 323 | | 1007 | | | 296 | 242
246 | | 1239
1263 | | 308 | | | 1261 | | | 4600 | 258
263 | | 1039
1059 | | 1319 | 317
322 | | 1139 | | | 330
334 | | 1026 | | | 303
308 | | | 1286 | | 316
321 | | | 1313 | | | 4800 | 270 | 232 | 1084 | 1286 | 1373 | 328 | | 1182 | | | 342 | | 1073 | | | 315 | | | 1310 | | 329
335 | | | 1341 | | | | 273
279 | | 1105 | | | 333
343 | | 1207 | | | 347
253 | | 1111 | | | 320
327 | | | 1333 | | 344 | | | 1368
1395 | | | 5000 | 283 | 247 | 1149 | 1361 | 1453 | 347 | 288 | 1259 | 1339 | 1573 | 358 | | 1132 | | | 333 | | | 1388 | | 350 | | | 1423 | | | 5200 | 290
293 | | 1172 | | 1481 | 353
358 | | 1278
1302 | | | 365
371 | | 1157 | | | 340
347 | | | 1413 | | 357
363 | | | 1449
1478 | | | 5400 | 299 | 262 | 1218 | 1433 | 1537 | 369 | 304 | 1331 | 1409 | 1658 | 377 | 301 | 1197 | 1577 | 1553 | 354 | 281 | 1166 | 1460 | 1498 | 369 | 380 | 1378 | 1503 | 1669 | | 3400 | 303 | | 1240
1263 | | 1563 | 373
379 | | 1355
1373 | | | 383
388 | | 1217 | | | 359
366 | | | 1483
1506 | | 376
383 | | | 1533
1557 | | | 5600 | 309
313 | | | | 1618 | 385 | 320 | 1394 | 1478 | 1746 | 394 | 317 | 1265 | 1659 | 1637 | 372 | 295 | 1233 | 1531 | 1576 | 390 | 402 | 1460 | 1585 | 1765 | | 5800 | 319 | 282 | 1309 | | 1646 | 394
3 99 | | 1423 | | | 400
466 | | 1251 | | | 379
386 | | | 1554
1581 | | 397
403
 | 1481
1512 | | 1793
1829 | | 6000 | 323
329
332 | 293 | 1334
1357
1376 | 1584 | 1676
1703
1732 | 405
410 | 336 | 1464 | 1546 | 1834 | 412
417 | 334 | 1327
1346 | 1740 | 1720 | 393
397 | 309 | 1298 | 1603
1627 | 1654 | 410
416 | 424 | 1533 | 1664
1694 | 1858 | APPENDIX TABLE 28h ## Detailed Follow-Up Load-Deflection Data, in Lb. and 1/1000 In. Pallets of Improved Design | Test
Logd | A | Palle: | ۱ Ng. | Bd1
D | Ε | A | Pallet
B | No. | 9d2
D | E | , I | Pallet
8 | No. 1 | 3±3
D | E | A | Palle
B | † No. | 8d4
D | £ | A P | ailet
B | No. 6 | kd5 _D | £ | |--------------|------------|------------|-------------|--------------|-------------|------------|-------------|--------------|------------|------------|------------|-------------|--------------|------------|------------|------------|------------|------------|--------------|--------------|------------|------------|------------|------------------|----------------------| | 0 | 000 | | 200 | 13 | 07 | 37 | 43 | 45 | !1 | 11 | 41 | 93 | 47 | 13 | 08 | 43 | 47 | 49 | 13 | 09 | 38 | 45 | 43 | 07 | OB. | 41 | 42 | 43 | | | 17
38 | 08
17 | 46
97 | 53
107 | 56
119 | 13
27 | 12
20 | 47
99 | 105
164 | 54
114 | 18
35 | 10
23 | 51
110 | 54
112 | 57
124 | 17 | 15 | 52
109 | .58 | .56 | 09 | 10 | 51 | .54 | .55 | | 400 | 43 | ió | 109 | 117 | 131 | 30 | 22 | 108 | 174 | 125 | 38 | 25 | 120 | 121 | 134 | 39
48 | 29
35 | 125 | 114 | 118 | 18
21 | 25
27 | 107 | 117 | 123
133 | | 600 | 60 | 28 | 155 | 169 | 188 | 46 | 30 | 156 | 231 | 184 | 55 | 36 | 175 | 179 | 198 | 62 | 50 | 177 | 186 | 194 | 32 | 40 | 170 | 184 | 197 | | ••• | 64 | 30 | 166 | 178 | 202 | 49 | 32 | 166 | 241 | 196 | 58 | 40 | 188 | 188 | 211 | 68 | 57 | 192 | 195 | 206 | 34 | 42 | 179 | 193 | 207 | | 800 | 81
86 | 38
40 | 210
222 | 224
235 | 255
268 | 65
68 | 40
42 | 214 | 295
306 | 254
266 | 75
79 | 47
51 | 240
254 | 243
254 | 273
287 | 81
87 | 73
81 | 241
258 | 251
262 | 266
281 | 47
49 | 54
56 | 235
246 | 249
259 | 271
282 | | 1000 | 101 | 48 | 264 | 280 | 321 | 82 | 49 | 271 | 360 | 323 | 95 | 57 | 306 | 307 | 349 | 98 | 94 | 306 | 315 | 337 | 62 | 68 | 302 | 316 | 347 | | 1000 | 104 | 51 | 275 | 291 | 335 | 85 | 52 | 282 | 372 | 336 | 99 | 62 | 323 | 319 | 364 | 102 | 100 | 318 | 325 | 349 | 63 | 70 | 312 | 325 | 357 | | 1200 | 118 | 60
66 | 316
331 | 338
355 | 388
406 | 101
104 | 59
62 | 328
339 | 426
437 | 394
407 | 116 | 68
73 | 377
392 | 372
383 | 425 | 113 | 109 | 363 | 378
388 | 404 | 74 | 82
84 | 367 | 391
390 | 420 | | | 147 | 73 | 374 | 402 | 460 | 119 | 48 | 386 | 493 | 463 | 120
135 | 84 | 372
448 | 438 | 439
501 | 117 | 113 | 374
416 | 437 | 416
468 | 76
85 | 95 | 376
427 | 444 | 430
490 | | 1400 | 153 | 81 | 387 | 416 | 476 | 122 | 71 | 397 | 505 | 478 | 141 | 86 | 468 | 452 | 520 | 137 | 125 | 429 | 448 | 482 | 87 | 97 | 437 | 454 | 501 | | 1600 | 171 | 89
93 | 432
444 | 467 | 533
547 | 134 | 78 | 440 | 555 | 528 | 156 | 98 | 522 | 508 | 582 | 142 | 135 | 473 | 501 | 536 | 95 | 1C7 | 487 | 505 | 561 | | | 172
183 | 101 | 484 | 481
525 | 598 | 136
152 | 79
86 | 455
499 | 569
517 | 543
598 | 161
175 | 99
103 | 540
589 | 523
573 | 600
660 | 147
156 | 138 | 487
528 | 514
565 | 550
604 | 97
104 | 109
118 | 497
543 | 514
563 | 572
627 | | 1800 | 186 | 106 | 496 | 541 | 613 | 158 | 87 | 516 | 633 | 615 | 181 | 108 | 610 | 590 | 679 | 160 | 151 | 542 | 578 | 619 | 106 | 120 | 554 | 572 | 639 | | 2000 | 205 | 115 | 540 | 588 | 668 | 168 | 94 | 557 | 676 | 664 | 194 | 113 | 657 | 638 | 735 | 170 | 160 | 582 | 628 | 670 | 116 | 130 | 599 | 617 | 692 | | | 207
225 | 119 | 553
596 | 601
647 | 682
735 | 175
186 | 97
103 | 574
614 | 692
736 | 680
728 | 199
121 | 118 | 676
723 | 654
703 | 755
810 | 174
183 | 170 | 599 | 646 | 689
737 | 117
123 | 132
141 | 608
653 | 626
669 | 703
753 | | 2200 | 228 | 133 | 610 | 660 | 750 | 191 | 105 | 631 | 750 | 744 | 218 | 127 | 745 | 720 | 829 | 187 | 187 | 639
656 | 692
708 | 755 | 124 | 142 | 665 | 680 | 755
766 | | 2400 | 238 | 141 | 649 | 701 | 796 | 204 | 112 | 673 | 794 | 791 | 230 | 132 | 791 | 764 | 880 | 195 | 195 | 692 | 753 | 801 | 131 | 152 | 708 | 722 | 814 | | 2400 | 241 | 145 | 665 | 717 | 813 | 207 | 114 | 690 | 812 | 808 | 236 | 136 | 814 | 781 | 900 | 200 | 201 | 711 | 769 | 818 | 136 | 154 | 720 | 733 | 828 | | 2600 | 260
262 | 155
158 | 706
722 | 761
776 | 864
883 | 218
223 | 120 | 728
747 | 853
870 | 853
870 | 249
257 | 141 | 856
884 | 822
483 | 948
971 | 208
212 | 210
216 | 749
769 | 811
829 | 864
883 | 142
144 | 161
164 | 760
770 | 774
785 | 873
887 | | 2000 | 271 | 166 | 756 | 814 | 923 | 235 | 128 | 785 | 908 | 911 | 268 | 150 | 925 | | 1017 | 219 | 224 | 804 | 867 | 925 | 150 | 172 | 807 | 821 | 929 | | 2800 | 287 | 168 | 806 | 834 | 956 | 238 | 131 | 806 | 925 | 929 | 276 | 154 | 956 | | 1042 | 224 | 229 | 821 | 882 | 944 | 155 | 174 | 818 | 835 | 944 | | 3000 | 295
299 | 176
180 | 839
859 | 868
887 | 998
1021 | 248
252 | 137 | 842
860 | 961
980 | 966
986 | 287
296 | 159 | 993
1023 | | 1085 | 232
237 | 238
243 | 857
878 | 921
940 | 987
1010 | 163
165 | 180
183 | 853
865 | 868
880 | 984
999 | | | 308 | 188 | 890 | | | 262 | 146 | | 1014 | | 307 | 168 | 1058 | | 1155 | 245 | 251 | 911 | | 1050 | 172 | 191 | 899 | 912 | 1037 | | 3200 | 312 | 193 | 914 | 940 | 1084 | 266 | 150 | 913 | 1034 | 1046 | 316 | 172 | 1089 | 1026 | 1184 | 250 | 257 | 935 | 995 | 1074 | 175 | 192 | 913 | 925 | 1052 | | 3400 | 331
334 | 200
206 | 953 | | 1126 | 275
279 | 155
158 | | 1065 | | 325 | | 1122 | | | 259 | 265 | | 1029 | | 183 | 199
201 | 945
958 | | 1088 | | | 341 | | 977
1004 | 1026 | | 288 | 164 | | 1086 | | 334
342 | | 1155 | | | 264
271 | 271 | | 1050
1083 | | 186
193 | 207 | 989 | | 1103
1138 | | 3600 | 353 | | | 1047 | | 293 | 168 | 1015 | | | 352 | | 1223 | | | 276 | | | 1105 | | 196 | 211 | 1004 | 1011 | 1153 | | 3800 | 360 | | | 1078 | | 303 | 174 | | | | 361 | | 1255 | | | 284 | | | 1135 | | 203 | | | 1038 | | | | 369
386 | | | 1105
1135 | | 306
315 | | 1067 | | | 369
377 | | 1297
1316 | | | 294
320 | | | 1155 | | 205
212 | | | 1052
1078 | | | 4000 | 394 | | | 1160 | | 319 | | 1116 | | | 386 | | 1349 | | | 307 | | | 1206 | | 216 | | | 1094 | | | 4200 | 401 | 246 | 1186 | 1188 | 1373 | 327 | 194 | 1146 | 1267 | 1305 | 394 | 223 | 1377 | 1285 | 1482 | 314 | 317 | 1220 | 1232 | 1356 | 220 | | | 1119 | | | 4100 | 406 | | | 1212 | | 331
340 | | 1168
1197 | | | 402
410 | | 1412 | | | 319
326 | | | 1256
1282 | | 222
231 | | | 1133
1157 | | | 4400 | 421
427 | | | 1265 | | 344 | | 1219 | | | 418 | | 1478 | | | 320 | | | 1308 | | 235 | | | 1175 | | | 4600 | 434 | | | 1292 | | 352 | | 1248 | | | 427 | 246 | 1506 | 1385 | 1610 | 338 | 346 | 1328 | 1333 | 1472 | 241 | 256 | 1195 | 1198 | 1370 | | 4000 | 440 | | | 1317 | | 355 | | 1270 | | | 436 | | 1545 | | | 344 | | | 1357 | | 243 | | | 1213 | | | 4800 | 458
463 | | | 1344
1371 | | 364
367 | | 1299
1321 | | | 444
453 | | 1573 | | | 350
355 | | 1382 | | 1530
1560 | 251
256 | | | 1234
1252 | | | 5000 | 470 | | | 1395 | | 375 | | 1349 | | | 461 | | 1637 | | | 362 | | | 1433 | | 260 | 275 | 1274 | 1274 | 1461 | | 5000 | 482 | 303 | 1430 | 1423 | 1659 | 379 | | 1370 | | | 471 | | | | | 368 | | | 1458 | | 265 | | | 1293 | | | 5200 | 489
495 | | | 1447 | | 387
390 | | 1398 | | | 479
490 | | 1706
1747 | | | 374
379 | | | 1483 | | 271
274 | | | 1311 | | | | 510 | | | 1499 | | 398 | | 1450 | | | 498 | | 1770 | | | 385 | | | 1533 | | 280 | 293 | 1358 | 1352 | 1555 | | 5400 | 516 | 322 | 1535 | 1530 | 1787 | 402 | 258 | 1479 | 1588 | 1666 | 508 | 295 | 1812 | 1621 | 1912 | 390 | 405 | 1573 | 1560 | 1735 | 284 | | | 1371 | | | 5600 | 522 | | | 1552 | | 410 | | 1504 | | | 517
529 | | 1837
1880 | | | 396
401 | | | 1582
1610 | | 291
295 | | | 139C
1413 | 1605
1 629 | | | 528
544 | | | 1581 | | 414
421 | | 1528
1555 | | | 536 | | 1902 | | | 407 | | | 1632 | | 301 | | | 1433 | | | 5800 | 555 | | | 1536 | | 425 | | 1577 | | | 548 | | 1946 | | | 412 | 432 | 1678 | 1660 | 1854 | 306 | 317 | 1479 | 1458 | 1861 | | 6000 | 561
575 | 345 | 1664 | 1658
1687 | 1945 | 433
437 | | 1603
1624 | | | 557
569 | | 1970
2011 | | | 418
422 | | | 1681
1709 | | 313
316 | | | 1478
1502 | | #### APPENDIX TABLE 2% #### Average Follow-Up Load-Deflection Values, in Lb. and 1/1000 in. | Test F
Load | | | flect
2 | ions / | 4 4 | 5 | Avg. | 1 | Defle
2 | ctions
3 | CD
4 | 5 | Avg. | 1 | Deff- | ection
3 | E 4 | 5 | Avg. | Pallet
Ab | 1 | Defi- | ection
3 | s AB | 5 | Avg. | 1 | Defle
2 | ctions
3 | CD | 5 | Avg. | , | Deflec
2 | tion E | 4 | 5 A | vg. | |----------------|-----|-------|----------------|----------------|-------------------|-------------------|-------------------|--------------------|-------------------|--------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------
-------------------|-------------------|-------------|--------|--------|------------------------------|----------| | 0
200 | C | 12 | 11 | 09 | 8 | 13 | 000 | 000
53 | 000
37 | 48 | 000
52 | 000
59 | 000
50 | 000
67 | 000
50 | 000
53 | 57 | 000
65 | 000
58 | | 000 | 000
10 | 000
10 | 000
09 | 000
09 | 000 | 000
45 | 000
52 | 000
57 | 000
55 | 000
57 | 000
53 | 000
58 | 000
56 | 61 | 58 | 38 . | 00
54 | | 400 | | 26 | 15
31 | 15
26
34 | 23 | 15
29 | 14
27 | 62
126 | 110 | | 69
138 | 67
131 | 61
124 | 76
149 | 66
136 | 64
128 | 76
157 | 74
145 | 71
142 | | 13
25 | 12
23 | 12
24 | 12
22 | 12
20 | 12
23 | 50
107 | 57
117 | 129 | 63
125 | 66
128 | 60
121 | 65
125 | | | 136 1 | 17 13 | 63
30 | | 600 | | 40 | 35
49
52 | 47
54 | 27
39
42 | 31
44
46 | 31
44
47 | 140
200
216 | 121
175
187 | 181 | 152
220
233 | 141
204
218 | 136
196
209 | 164
237
254 | 150
219
235 | 139
202
215 | 167
245
261 | 157
220
244 | 155
226
242 | | 29
42
46 | 27
38
40 | 26
37
40 | 25
34
37 | 23
32
35 | 26
37
40 | 118
176
193 | 129
187
198 | 140
203
214 | 135
198
209 | 141
200
212 | 133
193
205 | 139
205
224 | 206 | 221 | 218 | 132 14
197 20
110 22 | 09 | | 800 | | 53 | 62
66 | 64
71 | 52
56 | 56
59 | 57
62 | 274
289 | 235
247 | 245 | | 274
290 | 265
279 | 323
340 | 296
312 | 275
292 | 333 | 310
327 | 307
324 | | 61
65 | 49
53 | 50
53 | 45
47 | 43
46 | 50
53 | 252
266 | 254
269 | 274
286 | 266
277 | 267
281 | 263
276 | 290
307 | 283 | 302 | 296 2 | 76 28
89 30 | 89 | | 1000 | | 66 | 76
78 | 80
86 | 64
67 | 69
72 | 71
75 | 349
367 | 295
307 | 311 | 368
384 | 347
366 | 334
350 | 407
427 | 375
391 | 352
368 | | 391
409 | 387
405 | | 79
83 | 62
70 | 62
64 | 55
57 | 53
57 | 62
66 | 322
338 | 324
343 | 346
359 | 332
343 | 334
349 | 332
346 | 372
390 | 364 | 382 | 372 3 | 49 36
65 38 | 68 | | 1200 | | 79 | 89 | 95
100 | 75
78 | 80
83 | 84
87 | 423
440 | 354
367 | 376 | 443 | 422
439 | 404
420 | 492
511 | 452
470 | 428
446 | 496 | 472
490 | 468
486 | | 92
96 | 77
80 | 74
75 | 65
66 | 64
66 | 74 | 391
406 | 398
411 | 419 | 395
408 | 401
414 | 401
414 | 451
468 | 444 | 464 | 445 4 | 24 44
38 46 | 46 | | 1400 | | 93 I | | 108
115 | 84
87 | 91
93 | 95
98 | 500
515 | 416
427 | 460 | 532 | 492
507 | 474
488 | 580
598 | 531
547 | 508
524 | 579 | 550
567 | 550
567 | | 103 | 89
92 | 85
91 | 73
75 | 75
77 | 85
89 | 457
472 | 471
486 | 494
510 | 458
472 | 467
479 | 469
484 | 527
544 | 525
542 | 561 | | 98 52
12 53 | | | 1600 | | 105 1 | 16 | 122
132 | 94
97 | 100
104 | 106
111 | 567
581 | 474
488 | 529 | 588
604 | 561
577 | 540
556 | 663
683 | 608
626 | 585
605 | 684 | 632
650 | 631
650 | | 115
118 | 99
102 | 101
104 | 83
84 | 85
88 | 97
99 | 523
540 | 539
555 | 572
588 | 523
536 | 531
547 | 538
553 | 604
621 | 624 | 651 | 608 5 | 70 60
86 61 | | | 1800 | | | 27 | | 108 | 110 | 118
122 | 633
647 | 533
546 | | 661
678 | 628
646 | 607
623 | 744
761 | 687
705 | 668
690 | 767 | 711
729 | 712
730 | | 134
137 | 109 | 111 | 92
94 | 95
98 | 108 | 597
615 | 606
623 | 644
662 | 588
605 | 595
616 | 606
624 | 690
711 | 705 | 735 | 689 6 | 44 68
64 70 | 10 | | 2000 | 1 | 126 1 | 42 | 155 | | 120
121 | 130
132 | 697
717 | 591
604 | 661 | | 695
713 | 666
884 | 820
840 | 764
783 | 746
766 | 846 | 785
804 | 788
808 | | 142
146 | 123
126 | 123
126 | 100
104 | 104
108 | 118 | 661
678 | 677
692 | 714
730 | 649
666 | 662
682 | 673
690 | 763
783 | 787 | 814 | 762 7 | 20 75
39 77 | 77 | | 2200 | 1 | 137 1 | 52 | 166 | 127 | 128
130 | 140
142 | 766
785 | 645
662 | 723 | 814 | 759
775 | 735
752 | 898
918 | 837
860 | 821
843 | 924 | 860
878 | | | 151
155 | 132
134 | 135
138 | 110 | 114
116 | 128
131 | 724
741 | 740
759 | 783
801 | 712
729 | 747 | 737
755 | 835
853 | 853 | 894 | 833 8 | 93 83
113 85 | 51 | | 2400 | 1 | 150 i | 62 | 175 | 135
138 | 140
142 | 150
153 | 831
853 | 703
718 | 782 | 866 | 825
840 | 798
815 | 974
996 | 913
936 | | 1001 | 935
953 | | | 165
168 | 144 | 146
148 | 118 | 122
125 | 139
142 | 792
809 | 810
831 | 851
869 | 772
790 | 790
812 | 803
822 | 910
930 | 942 | 971 1 | 902 8 | 62 90
84 92 | 26 | | 2600 | 1 | 160 1 | 77 | 185 | 144 | 149 | 164 | 898
917 | 760
775 | 842 | 932
952 | 883
904 | 853
878 | 1048 | | 988 | 1053 | 1022 | 1034 | | 173
176 | 153
159 | 156
159 | 128
129 | 131
134 | 148
151 | 850
868 | 876
897 | 916
935 | 832
851 | 850
872 | 865
885 | | 994 1 | 048 | 969 9 | 132 97
155 99 | 97 | | 2800 | 1 | 172 1 | 87 | 194 | 154
157
164 | 158
159
168 | 171
174
176 | 961
980
1019 | 812
830
868 | 900 | 996
1017
1059 | 960 | 918
937
977 | 1120 | 1086 | 1060 | 1129 | 1091 | 1106 | | 182
185
196 | 167
171
176 | 166
168
176 | 136
137 | 141
144
151 | 158 | 909
929
970 | | 980
1001
1044 | 991
911
951 | 911
937
973 | 949 | 2501 | | 124 10 | 037 10 | 00 104
27 107
70 111 | 7Ŏ | | 3000 | | 183 2 | 02 | 204 | 167
173 | 171 | 185 | 1040 | 888
920 | | 1082 | 1030 | | 1213 | 1164 | 1133 | 1201 | 1168 | 1181 | | 198
203 | 179
187 | 178
185 | 144 | 154 | 169
171
177 | | 1028 | 1066 | 972 | 998 | 1011 | 1141 | 1167 1 | 198 1 | 108 10 | 97 114 | 12 | | 3200 | 1 | 195 2 | 14 | | 176
183 | 179
185 | 196 | 1102 | 942 | 1018 | 1150 | 1090 | 1060 | 1283 | 1237 | 1206 | 1273
1300
1344 | 1236 | 1252 | | 205
205
212 | 191 | 189 | 152
155
161 | 160
163
169 | 181 | 1046 | 1097 | 1133 | 1031 | | 1074 | 1204 | 1242 1 | 271 1 | 177 11 | 41 118
71 121
10 125 | 13 | | 3400 | | 206 2 | 23 | 225 | 187 | 189 | 206
213 | 1166 | 993 | 1076 | 1216 | 1151 | 1120 | 1353 | 1307 | 1276 | 7375
1417 | 1305 | 1323 | | 215
220 | 200 | 198
204 | 164 | 173
179 | 190 | 1100 | 1159 | 1199 | 1093 | 1125 | 135 | 1270 | 1313 1 | 344 12 | 245 12 | 41 125
78 132 | 33 | | 3600 | | 218 2 | 35 | 234 | 197 | 199 | 217
217
224 | 1229 | 1047 | 1135 | 1282 | 1215 | 1182 | 1425 | 1382 | 1349 | 1450
1492 | 1375 | 1396 | | 224
229 | 210 | 207
214 | 172
178 | 183
189 | 199 | 1160 | 1221 | 1265 | 1151 | 1184 | 196 | 1334 | 1385 1 | 417 13 | 311 13 | 70 132
110 135
146 139 | 51 | | 3800 | | 232 2 | 52 | 245 | 207 | 208
215 | 229
235 | 1294 | 1107 | 1195
1224 | 1350 | 1273 | 1244 | 1497 | 1461 | 1417 | 1524
1564 | 1442 | 1468 | | 232
244 | 221 | 217 | 181 | 193
198 | 209 | 1217 | 1283 | 1330 | 1210 | 1245 | 257 | 1399 | 1456 1 | 491 13 | 377 13 | 79 142
13 146 | ю | | 4000 | - 3 | 243 2 | 62 | 258 | | 218
224 | 240
245 | 1357 | 1159 | 1253 | 1415 | 1332 | 1303 | 1570 | 1533 | 1488 | 1597 | 1509 | 1539 | | 247
251 | 231 | 228
233 | 190
196 | 203 | 220 | 1285 | 1344 | 1393 | 1269 | | 319 | 1475 | 1527 1 | 566 14 | 143 14 | 47 149
83 153 | 22 | | 4200 | : | 256 2 | 76 | 269 | 227
234 | 224
231 | 250
257 | 1428 | 1212 | 1316 | 1480 | 1399 | 1367 | 1650 | 1608 | 1565 | 1671 | 1587 | 1616 | | 254
260 | 241
248 | 237
243 | 199 | 213 | 229 | 1338 | 1404 | 1459 | 1328 | 1364
1395 | 379 | 1538 | 1597 1 | 639 15 | 513 15 | 17 156
52 159 | 51 | | 4400 | : | 268 2 | 88 | 281 | | 235
241 | 262
267 | 1494 | 1268 | 1374 | 1546 | 1460 | 1428 | 1727 | 1686 | 1641 | 1746
1784 | 1658 | 1692 | | 263
268 | 251
258 | 247
252 | 208
214 | 224
230 | 239 | 1393 | 1464 | 1526 | 1387 | 1427
1456 | 439 | 1603 | 1668 1 | 715 15 | 581 15 | 88 163
22 166 | 31 | | 4600 | | 278 2 | 96 | 292 | 249
255 | 245
251 | 272
278 | 1560 | 1318 | 1407 | 1611 | 1521 | 1483 | 1803 | 1759 | 1735 | 1822
1859 | 1728 | 1769 | | 272
284 | 262
268 | 256
261 | 217 | 235 | 248 | 1447 | 1526 | 1590 | 1446 | 1488 | 499 | 1667 | 1740 1 | 788 16 | 550 16 | 59 170
94 174 | Ĭ | | 4800 | | 288 3 | 05 | 303 | 261
266 | 255
262 | 282
288 | 1626 | 1381 | 1534
1563 | 1679 | 1583 | 1561 | 1881 | 1849 | 1926 | 1901
1940 | 1799 | 1871 | | 286
292 | 272 | 264
271 | 226
233 | 247
252 | 259 | 1515 | 1500 | 1655 | 1506 | 1550 I | 563 | 1746 | 1812 1 | 864 17 | 721 17 | 34 177
67 181 | 75 | | 5000 | | 298 3 | 15 | 313 | 272
279 | 266
273 | 293
298 | 1695 | 1436 | 1586
1614 | 1751 | 1652 | 1524 | 1963 | 1931 | 2023 | 1985
2023 | 1881 | 1957 | | 295
301 | 283
288 | 274
279 | 236
243 | 258
263 | 269 | 1568 | 1652 | 1720 | 1568 | 1613
1639 | 624 | 1812 | 1887 1 | 940 17 | 793 18 | 07 184
39 188 | 18 | | 5200 | : | 308 3 | 24 | | 284
290 | 276
283 | 303
306 | 1762 | 1503 | 1639 | 1826 | 1719 | 1690 | 2044 | 2025 | 2124 | 2072
2108 | 1959 | 2045 | | 304
314 | 292
298 | 283
288 | 247
253 | 269
274 | 279 | 1623 | 1715 | 1783 | 1629 | 1676 | 685 | 1878 | 1964 2 | 015 18 | 64 181 | 82 192
14 195 | 1 | | 5400 | | 317 3 | 34 | 342 | 297 | 287
291 | 315
320 | 1837 | 1562 | 1633 | :896 | 1787 | 1743 | 2129 | 2110 | 2321 | 2154 | 2041 | 2151 | | 317 | 302
308 | 292
297 | 257
263 | 279
284 | 289 | 1690 | 1778 | 1845 | 1690 | 1739 1
1766 1 | 748 |
1957 | 2039 2 | 089 19 | 737 19 | 59 199
91 203 | 26 | | 5600 | | 328 3 | 144 | 359 | 309
316 | 296
303 | 327
333 | 1906 | 1619 | 1623 | 1970 | 1859 | 1795 | 2211 | 2193 | 2491 | 2238
2275 | 2126 | 2252 | | 325
330 | 312 | 301
306 | 267
272 | 289
294 | 299 | 1743 | 1843 | 1910 | 1752 | | 811 : | 2034 | 2118 2 | 165 20 | 11 20 | 39 207
71 210 | 71 | | 5800 | | 338 3 | 156 | | 321
328 | 307
312 | 339 | 1978 | 1685 | 1653 | 2045 | 1930 | 1858 | 2294 | 2284 | 2624 | 2325 | 2208 | 2347 | | 334
343 | 322
328 | 309 | 278
272 | 301
306 | 309 | 1802 | 908 | 974 | 1816 | 1872 | 874 | 2094 | 2195 2 | 239 20 | 87 21 | 18 214
51 218 | 17 | | 6000 | | | | | 334 | 317 | | | | 1689 | | | | | | | | | | | 346 | 333 | | | | 319 | 1870 | 978 | 2040 | 1878 | 1936 | 940 | 2175 | 2274 2 | 311 21 | 63 21 | 98 222 | 14 | #### APPENDIX TABLE 296 ## Average Follow-Up Load-Deflection Values, in Lb. and 1/1000 in. | Test P
Load | allet
Ac 1 | | ections
3 | AB
4 | 5 | Avg. | 1 | Defle | ctions CD | 5 | Avg. | 1 | Deflec | | 4 | 5 | Avg. | Pallet
Ad | 1 | Defle | ctions
3 | AB
4 | 5 | Avg. | | Defie
2 | ctions
3 | CD 4 | 5 | Aum | 1 | Deflec | tion i | E 4 | 5 | Avg. | |----------------|---------------|----------------|----------------|----------------|----------------|------------------------|-------------------|-------------------|-------------------------------|--------------|-------------------|-------------------|-------------------|------------------|----------------|----------------|-------------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-----------------------|-------------------|--------------------|-------------------|--------------------|-----------------|------------------|------------------|-------------------| | 0 | 00 | | 000
09 | 000
15 | 000
80 | 000 | 000
56 | _ | 000 000
56 60 | 000 | 000 | 000 | _ | - | | 000 | 000 | - | 000 | 000
23 | 000 | 000 | 000
07 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | - | 000 | | 200
400 | 1 | 2 18 | 10
20 | 18
32 | 09
22 | 11
23 | 63
126 | 60
117 | 67 71
133 138 | 46 | 61
123 | 68
137 | 66 | 72 | 74 | 54
114 | 67
135 | • | 11 | 24
35 | 20
32 | 12 27 | 10 | 15
27 | 33
94 | 69
77
142 | 63
77
144 | 59
67
137 | 55
70
136 | 55
65
131 | 67
73
139 | 75
84
!58 | 67
82
154 | 62
71
148 | 74 | 66
77
149 | | 600 | 2
3
3 | 5 29 | 23
31
34 | 37
49
53 | 25
35
38 | 26
36
39 | 135
195
205 | 128
184
197 | 147 153
209 223
222 237 | 163 | 135
195 | 148
216 | 208 | 232 : | 240 | | 148
216 | | 23
33 | 37
47 | 38
49 | 37
48 | 21
29 | 31
41 | 105
162 | 153
216 | 159
222 | 153
216 | 150
213 | 144
206 | | 245 | | 237 | 233 | 164
235 | | 800 | 4 | 5 39 | 43 | 63
66 | 48
50 | 48
50 | 264
274 | 249 | 282 299 | 223 | 207
263 | 229
296 | 280 | 317 : | 328 | 257 | 231
296 | | 37
45 | 50
59 | 53
63 | 55
64 | 31
39 | 45
54 | 177
231 | 228
287 | 235
295 | 233
289 | 226
288 | 278 | 233
295 | 331 | 328 | 320 | 319 | 251
319 | | 1000 | 5 | 8 47 | 53
56 | 76
80 | 60
63 | 59
62 | 333
343 | 261
313
326 | 296 314
354 373
368 390 | 282 | 276
331
344 | 309
375
388 | 361 | 399 | 409 | | 311
374
389 | | 49
57
59 | 62
70
74 | 66
76
79 | 68
76
79 | 41
48
50 | 57
65
68 | 244
296
310 | 301
359
373 | 310
369
385 | 307
363
379 | 305
366
382 | 351 | 312
373
388 | 415 | 410 | 402 | 402 | 336
400
417 | | 1200 | 7 | | 63
66 | 89
91 | 72
73 | 70
72 | 401
412 | 379
393 | 425 448
439 467 | 340 | 399
413 | 451
465 | 437 | 461 4 | 492 | | 451
466 | | 67
71 | 82
85 | 89
92 | 87
90 | 57
60 | 76
80 | 362
377 | 429
443 | 446
462 | 434
453 | 444
461 | | 449 | 498 | 495 | 483 | 467 | 482
500 | | 1400 | 8
8 | 0 64
2 70 | 73
75 | 100
102 | 83
83 | 80
83 | 466
478 | 443
459 | 493 522
507 541 | 395 | 464
478 | 529
543 | 510 | 559 | 575 | 459 | 526
543 | | 77
80 | 93
96 | 101
104 | 97
101 | 65
68 | 97
90 | 427
439 | 499
512 | 517
534 | 510
527 | 521
539 | 495 | 525 | 580 | 577 | 565 | 572 | 564
581 | | 1600 | 9 | | 82
85 | 110
114 | 89
91 | 89
92 | 530
541 | 508
522 | 561 595
574 614 | | 529
543 | 607
621 | | | | | 603 | | 88
91 | 104 | 113
117 | 108
112 | 74
76 | 97
101 | 491
506 | 564
579 | 588
603 | 577
594 | 598
615 | 564 | 599
616 | | | | | 645
663 | | 1800 | 10 | 83 | 92
94 | 121
125 | 98
100 | 89
101 | 589
601 | 568
582 | 626 667 | | 591
605 | 678
692 | 660 | 718 7 | 737 | | 676
693 | | 98
102 | 115 | 126
130 | 118 | 82
85 | 108 | 557
570 | 630
646 | 657
674 | 643 | 671
691 | 639 | 676 | 742 | 743 | 720 | 742 | 725
744 | | 2000 | 10
11 | 2 90 | 100 | 132
136 | 106
108 | 107
110 | 648
660 | 628
643 | 689 735
705 758 | | 651
668 | 747
761 | | | | | 748
765 | | 109 | 126
128 | 137
142 | 128
131 | | 118 | 619 | 697
712 | 725
740 | 711
730 | 745 | 699 | 751 | 821 | 321 | 795 | 822 1 | 802
821 | | 2200 | 11 | | 109
112 | 143
148 | 115
117 | 116 | 705
721 | | 751 807
769 831 | | 712
730 | 814
829 | | | | | 818
837 | | 118 | 135
138 | 150
154 | 137 | 99 | 128
131 | 678
698 | 761
780 | 790
807 | 775
796 | 816 | 764 | 821 | 897 | 898 | 866 | 901 (| 877
897 | | 2400 | 12
12 | B 105 | 118
121 | 154
159 | 124
125 | 125
128 | 762
778 | 766 | 813 878
832 904 | 676 | 773
791 | 878
893 | | | | 777
794 | 887
906 | | 127 | 146
151 | 163
165 | 147
150 | 107 | 138
141 | 740
757 | 827
864 | 855
872 | 840
861 | 887 | 830 | | 974 | 772 | 936 | | 950 | | 2600 | 13
13 | 9 113 | 130 | 165
170 | 132
134 | 134
137 | 817
833 | | 872 948
892 973 | 728 | 832
851 | 940
958 | 944 1
966 1 | | | | 954
975 | | 139
142 | 158
161 | 174
177 | 156
160 | 114
118 | 148
152 | 801
819 | 905
923 | 916
935 | 903 | | 896 | 960 | 1057 TI | 043 F | 005 10 | 052 10 | 023 | | 2800 | 14 | | | 176
180 | 140
142 | 143
146 | 872
887 | 866
886 | 931 1014
953 1042 | | | | 1012 1
1035 1 | | | 895
914 | | | 147
150 | 169
172 | 187
187 | 165
168 | 122
127 | 158
161 | 857
874 | 963
981 | 975
996 | 962 | 1019 | 955 | 1027 | 1132 1 | 115 1 | 073 I | 127 10 | 095 | | 3000 | 15
15 | | 146 | 186
192 | 148
151 | 152
155 | 927
947 | | 991 1060
1014 1111 | | | | 1080 1
1105 1 | | | 954 :
976 : | | | 154
158 | 180
183 | 196
199 | 175
178 | 131
135 | 167
171 | | | | | | | | 204 1 | | | | | | 3200 | 16
16 | 6 138 | 158 | 198
203 | 157
159 | 162
165 | | 1005 | 1050 1148
1075 1178 | 885 | 1030 | | 1148 1
1174 1 | | | | | | 166
168 | 190
194 | 207
210 | 184
187 | 139
144 | 177
181 | | | | | | | | 274 1:
309 1: | | | | | | 3400 | 17
17 | 5 146 | 167 | 208
213 | 165
168 | 171
174 | 1066 | 1063 | 1110 1214
1135 1244 | 938 | 1089 | | 1214 1
1241 1 | | | | | | 173
176 | 200
205 | 217
220 | 193
197 | 148
152 | 186
190 | | | | | | | | 354 1:
387 1: | | | | | | 3600 | 18
18 | 5 154 | 175
178 | 219
225 | 173
177 | 184 | 1127 | 1124 | 1172 1278
1197 1311 | 991 | 1150 | 1296 | 1281 1
1311 1 | 378 14 | 139 1 | 163 | 1317 | | 184
186 | 212
218 | 227
232 | 202
205 | 156
160 | 196
200 | | | | | | | | 437 1:
506 1 | | | | | | 3800 | 19
19 | 5 162 | | 231
236 | 183
186 | 194 | 1186 | 1185 | 1233 1343
1259 1376 | 1044 | 1210 | 1365 | 1349 1
1380 1 | 447 15 | 512 1 | 226 | 1386 | | 191
194 | 224
230 | 239
243 | 211
214 | 165
168 | | | | | | | | | 1552 14
1606 14 | | | | | | 4000 | 20
20 | | 194
198 | 242
247 | 191
195 | | | | 1293 1408
1319 1443 | | 1271 | 1434 | 1418 1
1450 1 | 516 15 | 587 1 | 288 | 1455 | | 203
205 | 235
251 | 249
253 | 221
223 | 173
177 | | | | | | | | | 652 1:
850 1: | | | | | | 4260 | 21
21 | | 204
208 | 253
258 | 201
204 | 20 9
213 | | | 1352 1474
1380 1512 | | | | 1467 1.
1520 1 | | | | | | 210
214 | 258
264 | 260
263 | 229
233 | 181
187 | | | | | | | | | 1899 1:
1957 1: | | | | | | 4400 | 22
22 | 5 187 | 214
218 | 264
270 | 214 | 223 | 1366 | 1366 | 1412 1542
1441 1580 | 1212 | 1393 | 1577 | 1555 I
1590 I | 656 17 | 738 1 | 415 | 1595 | | 221
223 | 272
279 | 270
274 | 239
243 | 191
195 | 243 | 1332 | 1147 | 1477 | 1473 | 1582 | 1402 | 1591 2 | 2004 10
2063 10 | 597 1 | 639 17 | 755 17 | 749 | | 4600 | 23
23 | | | 275
281 | 219
227 | | | | 1473 1610
1504 1650 | | | | 1625 1
1660 1 | | | | | | 227
230 | 284
291 | 280
284 | 249
252 | 199
203 | 248
252 | | | | | | | | 107 1 | | | | | | 4800 | 23
24 | 205 | | 286
292 | 239 | 244 | 1482 | 1487 | 1535 1678
1568 1719 | 1324 | 1516 | 1717 | 1695 1
1731 1 | 801 18 | B96 1 | 548 | 739 | | 237
239 | 298
306 | 291
297 | 258
260 | 207
212 | 263 | 1421
1448 | 1 187
1 177 | 1566
1596 | 1563
1 59 6 | 1681
1721 | 1484
1508 | 1698 2
1732 2 | 227 10
2313 10 | 303 I
338 I | 741 11
774 19 | 869 16
914 19 | 868
914 | | 5000 | 24
25 | | | 297
302 | 243
248 | 249
253 | | | 1597 1748
1632 1790 | | | | 1765 I
1804 I | | | | |
 243
245 | 311
321 | 303
307 | 267
269 | 217
221 | 268
273 | | | | | | | | 1361 11
1457 1 | | | | | | 5200 | 25
26 | 9 219 | 255 | 308
314 | | | | | 1661 1817
1697 1861 | | 1643 | 1862 | 1839 I
1860 I | 953 20 | D58 I | 684 | 1887 | | 252
253 | 326
336 | 314
318 | 275
279 | 225
230 | 283 | 1535
1564 | 1207
1210 | 1686
1720 | 1689
1723 | 1818
1858 | 1587
1615 | 1837 2
1873 2 | 2504 1º | 949 I
986 I | 880 20
918 20 | 030 20
075 20 | 040
007 | | 5400 | 26
27 | 3 230 | 265 | 319
325 | 263
268 | | 1627 | 1641 | 1725 1888
1762 1933 | 1467 | 1670
1707 | 1935 | 1913 1
1957 2 | 029 2 | 140 1 | 755 | 1963 | | 257
259 | 342
351 | 325
329 | 284
288 | 234
239 | 288 | 1590 | 1230 | 1747 | 1751 | 1885 | 1641 | 1907 2 | 626 20
771 20 | 21 1 | 952 2 | 109 2 | 123 | | 5600 | 27
28 | 8 241
4 244 | 275
283 | 331
337 | 272
277 | 279
285 | 1686
1719 | 1705
1745 | 1791 1959
1834 2008 | 1526
1561 | 1733
1773 | 1969
2010 | 1990 2
2038 2 | 063 12
109 22 | 271 1
223 1 | 786
825 2 | 1996
2041 | | 266
268 | 357
366 | 336
342 | 293
297 | 243
249 | 299
304 | 1649
1681 | 1328
1336 | 1807
1840 | 1814
1851 | 1963
2006 | 1712
1743 2 | 1980 2
2020 2 | 2771 20
2771 2 | 195 2
136 2 | 023 2
063 2 | 197 22
245 22 | 213
247 | | 5800 | 28
29 | | 295 | 341
348 | 281
286 | | 1779 | 1807 | 1861 2035
1903 2083 | 1622 | 1839 | 2086 | 2069 2
2115 2 | 189 23 | 310 1 | 899 2 | 1120 | | 272
275 | 37 l
38 l | 347
354 | 303
308 | 253
258 | 309 | 1704 | 1354 | 1864 | 1879 | 2034 | 1767 2 | 2050 2 | 771 2
771 2 | 169 2 | 097 2 | 277 22 | 273 | | 6000 | 29
30 | | 300
307 | | 291
294 | | | | 1929 2110
1970 2163 | | | | | | | | | | 281
284 | 388
397 | 359
365 | 313
317 | 261
268 | 320 | 1764 | 1392 | 1926 | 1946 | 2105 | 1827 2 | 2124 2 | 771 2:
1771 2: | 244 2 | 173 2 | 362 2 | 335 | #### APPENDIX TABLE 29c ## Average Follow-Up Load-Deflection Values, in Lb. and 1/1000 in. | Test Pallet
Load Ba | | flection | | 5 | Avg. | | Deflect
2 | ons CD | 5 | Avg. | 1 | Defic
2 | ection
3 | E 4 | 5 | Avg. | Pallet
Bb | , 0 | Deflect
2 | tions . | AB ₄ | 5 | Avg. | , | Defia | ctions
3 | CD 4 | 5 | Avg. | 1 | Defle
2 | ction
3 | E 4 | 5 | Ava. | |------------------------|----------------|-------------------------------|--------------|------------|------------|--------------|--------------------|----------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------|-------------------|----------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|--------------|------------------|-------------------|-------------------|------------------|----------------|-------------------|----------------|-------------------| | 0 | 000 0 | 00 000 | 000 | 000 | 000 | | 000 (| 00 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | - | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | C00 | 000 | | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | 200 | 10 | 12 03
14 06 | . 11 | 07
08 | 08
10 | 41
46 | 41
46 | 37 47
54 5 | 37 | 41
49 | 47
54 | 46
52 | 41 | 51
59 | 40 | 45
55 | | 12 | 12 | 12 | 07
09 | 08 | 10 | 45
51 | 44
55 | 47 | 33
42 | 33 | 40
48 | 40 | 46 | 54
61 | 35 | 46
54 | 44
53 | | 400 | | 32 14
36 16 | | 18
20 | 22
24 | 92
99 | | 00 111
07 115 | | 98
106 | 107
116 | 107
117 | 113 | 122
131 | 105
115 | 111 | | 27
30 | 29
33 | 27
30 | 20
24 | 21
24 | 25
28 | 102 | 107
117 | 109
118 | 92
101 | 92 | 100
110 | 105 | 117 | 125
136 | 100 | 113 | 112 | | 600 | 32 | 49 24
52 26 | 1 38 | 30
32 | 35
37 | 146
154 | 146 | 51 173
60 183 | 153 | 154
163 | 169
178 | 167
176 | 172 | 190 | 173
182 | 174
184 | | 43
48 | 43
47 | 42
46 | 33
35 | 34
36 | 39
42 | 160
171 | 163
172 | 171 | 149 | 151 | 159
168 | 172
190 | 184 | 197
208 | 163
173 | | 179
191 | | 800 | | 65 35
71 37 | | 41 | 47
50 | 197
206 | | 01 23 | | 207
217 | 230
242 | 229 | 232 | 261 | 237
249 | 238
250 | | 57 | 56 | 56 | 45 | 46 | 52 | 215 | 216 | 226 | 209 | 207 | 215 | 238 | 246 | 265 | 230 | 243 | 244 | | 1000 | 55 | 83 44
89 48 | 65 | 51
53 | 60
63 | | 249 | 52 296 | 261 | 261
272 | | | 292
303 | 332
344 | 301
313 | 302
314 | | 63
74
79 | 59
68
71 | 58
68
71 | 48
58
61 | 48
58
61 | 55
65
69 | 227
271
283 | 226
270
280 | 236
282
291 | 268 | 263 | 225
271
281 | 254
303
318 | | | 241
298
312 | | 257
309
323 | | 1200 | | 00 55
06 57 | | 62
64 | 72
75 | 298
307 | 302 | 02 35:
113 367 | 315 | 314
325 | 353
363 | 357
372 | 350 | 399 | 364
377 | 365
377 | | 89
94 | 80
84 | 80
83 | 70
73 | 70
73 | 78
81 | 325
337 | 323 | 334
345 | 330
343 | 320 | 326
338 | 364
381 | 369 | 394 | 369 | 375 | 374
387 | | 1400 | 77 1
79 1 | 16 64
19 67 | 91 | 72
75 | 84
87 | 347
357 | 355 3
369 3 | 52 415
64 427 | 366
376 | 367
379 | 410
421 | 418
432 | 405
416 | 465
479 | 427
437 | 425
437 | | 103
108 | 92
97 | 92
95 | 80
85 | 82
84 | 90
94 | 379
391 | 375
388 | 390
402 | 390
404 | 373
383 | 381
394 | 424
440 | 429
535 | 457
470 | 435
448 | 434
445 | 436
468 | | 1600 | | 32 74
35 76 | | 83
85 | 96
100 | | | 04 472
15 489 | | 420
433 | 468
481 | 482
498 | 459
469 | 530
546 | 487
501 | 485
499 | | 116 | 105 | 104
107 | 92
96 | 93
96 | 102
104 | 431
443 | 429
442 | 444
456 | | | 436
448 | 483
498 | | | | | 516
529 | | 1800 | 103 1 | 47 84
50 88 | 124 | 92
94 | 109
112 | 445
457 | 484 | 52 53:
65 549 | 465 | 473
486 | 526
539 | 547
564 | 511 | 598 | 547
561 | 546
561 | | 128
132 | 119 | 116
124 | 103
107 | 106
108 | 114 | 480
492 | 482
497 | 495
511 | 511
525 | 475
486 | 489
502 | 542
560 | 645 | 580 | 564 | 550 | 576
591 | | 2000 | | 59 94
64 96 | | 102
106 | 119
124 | 492
503 | | 00 589
13 602 | | 524
537 | | 613
632 | 566
580 | | 606
620 | 606 | | 140 | 131
135 | 132
136 | 113 | 116 | 126
130 | 527
537 | 534
549 | 548
560 | | | 540
553 | 597
611 | | | | | 635
650 | | 2200 | 126 1 | 77 105
80 106 | 147 | 112
115 | 132
135 | 540
551 | 584 5
598 5 | 49 642 | 557
569 | 574
588 | 641
656 | 682
699 | 623
638 | 725
742 | 662
676 | 667
682 | | 150
154 | 143
146 | 144 | 124
127 | 129
130 | 138
141 | 573
587 | 586
602 | 597
610 | 622
635 | 576
588 | 591
604 | 651 | 763 | 700 | 689 | 666 | 694
709 | | 2400 | | 89 113
93 116 | | 121
125 | 143 | 587
600 | | 99 695 | | 624
638 | | 746
763 | 680
694 | | | 725
741 | | 161
165 | 153
158 | 158
164 | 133
137 | 139
141 | 149
153 | 621
634 | 637
655 | | | | 641
656 | 704
726 | | | | | 751
768 | | 2600 | 144 2
147 2 | 05 122
08 126 | 166 | 131
134 | 154
157 | 633
647 | 692 6
709 6 | 44 750
63 769 | 646 | 673
689 | | 809 | 733
753 | 846
866 | 769 | 782
799 | | 172
175 | 166 | 172
178 | 142
145 | 149
153 | 160 | 667
681 | 690 | 698 | 724 | 674
690 | 691
707 | 763 | 876 | 815 | 804 | 780 | 608
824 | | 2800 | | 17 133
20 136 | | 143
145 | 165
168 | | | 94 802
09 820 | | 722
739 | 804
821 | 867
888 | 790
804 | | | 838
855 | | 182
186 | 177
181 | 188
195 | 150
153 | 160 | 171
177 | 713
730 | 742
757 | | | | 740
757 | | | | | | 862
880 | | 3000 | 163 2 | 27 142
33 145 | 186 | 150
152 | 174
178 | | 793 | 40 85 | 739 | 770
787 | 856
874 | | 840
859 | 961 | 873 | 891
910 | | 193 | 187
191 | 202 | 159 | 177
182 | 184
188 | 759
776 | | 796 | 825 | 775 | 789
807 | 867 | 985 | 925 | 914 | 888 | 916
935 | | 3200 | 175 2 | 39 151
44 155 | 198 | 157
163 | 184
188 | 774
792 | 843 7 | 86 90 | 782 | 818
838 | | 985 | 892
911 | 1018 | 924 | 946 | | 205 | 197 | 220
227 | 167
171 | 189 | 196 | 807 | 838
858 | 844 | 873 | | 837 | 920 | | 189 | 967 | 942 | 970 | | 3400 | 185 2 | 51 161
56 164 | 206 | 168
170 | 194
198 | 820 | 892 8 | 131 959
151 98 | 827 | 866
886 | 962
983 | 1042 | 942 | 1073 | 976 | 999
1021 | | 209
214
218 | 202
208
212 | 234
239 | 171
177
184 | 198
201 | 200
206
211 | 851 | 888
910 | 892 | 921 | 871 | 865 | 972 | 1094 1 | 034 | 023 | 995 1 | | | 3600 | | 62 169 | | 175
181 | 204
208 | 867
886 | | 78 1012 | | | 1017 | 1099 | 994 | | 1029
1056 | | | 224
229 | 217 | 246
251 | 189
192 | 208
212 | 217 | 896
917 | | | | | | | 1150 I | | | | | | 3800 | 207 2 | 74 179
81 183 | 227 | 185 | 214 | 914 | 990 9 | 27 1065
50 1090 | 916 | | 1070 | 1159 | 1047 | 1190 | 1084 | 1110 | | 235 | 227 | 260
263 | 198
200 | 217 | 227 | 942 | 986 | 988 | 1021 | | 981 | 1078 | 1204 I
1228 I | 145 1 | 1133 1 | 105 1 | 133 | | 4000 | 216 2 | 87 189
91 192 | | 193 | 224 | | 1041 9 | 74 1117
95 114 | 961 | | 1124 | | | | | | | 245 | 236
240 | 271
274 | 205 | 227
230 | 237 | 989
1010 | | | | 1015 1
1034 1 | 028 | 1130 | 1256 1
1281 1 | 201 1 | 1185 1 | 159 1 | 186 | | 4200 | 227 2 | 98 196
03 202 | 248
2 253 | 203
206 | 235
239 | 1011 | 1095 10
1118 10 | 119 117
141 119 | 1 1006
7 1028 | 1060
1084
| 1180
1206 | 1281
1307 | 1151
1177 | 1303
1329 | 1188
1214 | 1221
1247 | | 255
260 | 245
250 | 281
284 | 215
218 | 238
241 | 247
251 | 1033
1055 | 1082
1169 | 1079 | 1112 | 1062 1
1082 1 | 074
096 | 1182
1207 | 1308 1
1334 1 | 251 1
275 1 | 236 1
1259 1 | 214 I
237 I | 238
262 | | 4400 | | 10 207
15 211 | | 213 | | | | 64 122:
88 125 | | | 1236
1262 | | | | | | | 266
270 | 254
260 | 292
295 | 223
228 | 246
250 | 256
261 | | | | | 1106 I
1128 I | | | 1360 1
1387 1 | | | | | | 4600 | 246 3 | 22 217
27 22 | 7 269 | 221
225 | 255 | 1110 | 1194 1 | 11 1270
37 130 | 1101 | 1159
1185 | 1291
1318 | 1393
1423 | 1253
1283 | 1417
1450 | 1299
1327 | 1331
1360 | | 276
279 | 264
268 | 301
305 | 233
237 | 257
260 | 266
270 | 1124
1145 | 1181
1209 | 1172 | 1206
1230 | 1152 I
1177 I | 167
191 | 1285
1312 | 1413 1
1440 1 | 358 1
383 1 | 1336 1
1362 1 | 316 1
341 1 | 342
358 | | 4800 | | 34 227
39 231 | | 229
233 | | | | 60 133
87 136 | | | 1347
1374 | | | | | | | | 273
278 | 312
316 | 241
247 | 266
269 | | | | | | 1201 1
1224 1 | | | 1465 1
1493 1 | | | | | | 5000 | 266 3 | 45 23
51 23 | 5 291 | 239
242 | 275
280 | 1211
1236 | 1296 12
1321 12 | 09 139:
34 1424 | 1194 | 1261
1287 | 1401
1431 | 1513
1543 | 1367
1403 | 1541
1571 | 1409
1438 | 1446
1477 | | 295
301 | 282
287 | 322
326 | 252
256 | 276
279 | 285
290 | 1214
1237 | 1282
1309 | 263 1
286 1 | 1302
1326 | 1250 I
1273 I | 262
286 | 1393
1420 | 1519 I
1546 I | 467 1
493 1 | 441 1 | 425 1
450 1 | 449
476 | | 5200 | 276 3 | 57 244
62 249 | 4 302 | 247
252 | 285
290 | | | 56 1456
79 147 | | | 1460 | | | | | | | | 292
296 | 332
336 | 261
266 | 265
266 | | | | | | 1297 I
1319 I | | | 1572
1602 | | | | | | 5400 | 286 3 | 68 254
73 256 | 4 312 | 257
260 | 295 | 1309 | 1399 13 | 00 150:
24 153: | 1286 | 1360 | 1516
1544 | 1636 | 1491 | 1663 | 1520 | 1565 | | 316
321 | 301
305 | 344 | 270
275 | 294
297 | | 1304 | 1381 | 355 | 1395 | 1342 i
1365 i | 355 | 1499 | 1628 1
1658 1 | 575 1 | 548 1 | 531 1 | 556 | | 5600 | 295 3 | 80 26
85 26 | 3 323 | 265
269 | 305 | 1357 | 1448 13 | 146 1560
180 159: | 1333 | 1409 | 1572
1608 | 1696 | 1553 | 1724 | 1578 | 1625 | | 326
330 | 309
314 | 354
357 | 280
285 | 305
309 | 315 | 1348 | 1430 | 399 | 1442 | 1390 I
1413 I | 402 | 1552 | 1684 1
1716 1 | 630 1 | 601 1 | 585 1 | 610 | | 5800 | 306 3 | 91 27 | 3 333 | 274
278 | 315 | 1411 | 1498 1- | 02 161
129 165 | 7 1381 | 1462 | 1634 | 1758 | 1623 | 1784 | 1638 | 1687 | | | 319 | 364
368 | 290
295 | 314
318 | 325 | 1394 | 1483 | 447 | 1490 | 1436 1
1460 1 | 450 | 1606 | 1741 1
1776 1 | 686 1 | 655 1 | 642 1 | 666 | | 6000 | 316 4 | 197 277
103 287
109 287 | 2 344 | 283 | 326 | 1462 | 1551 1 | 151 167:
173 170 | 1428 | 1513 | 1694 | 1820 | 1684 | 1847 | 1695 | 1748 | | 347 | 328 | 373
378 | 300
304 | 324
328 | 334 | 1441 | 1537 | 489 | 540 | 1483 I
1510 I | 498 | 1660 | 1801
1835 | 741 1 | 709 1 | 697 1 | 722 | # APPENDIX TABLE 29d # Average Follow-Up Load-Deflection Values, in Lb. and 1/1000 In. | Test f
Load | | B
4 5 Avg. | Deflections CD
. 1 2 3 4 5 Avg. | Deflection E
1 2 3 4 5 Avg | Pallet Deflections AB | Deflections CD Deflection E
Avg. 1 2 3 4 5 Avg. 1 2 3 4 | 5 Avg. | |----------------|----------------------------------|------------------------------------|--|---|---|---|------------------------| | 0 | 000 000 000 0 | 000 000 000 | 000 000 000 000 000 000 | 000 000 000 000 000 000 | 000 000 000 000 | | - | | 200 | 09 04 68
10 04 11 | 09 10 08
14 13 10 | 47 26 39 25 45 36
51 33 45 38 55 44 | 54 44 37 24 49 42
57 52 43 38 60 50 | 10 11 11 11 | 000 000 000 000 000 000 000 000 000 0 | 43 45 | | 400 | 21 12 24
23 14 27 | 26 27 22
30 28 24 | 100 84 97 88 111 96
108 93 106 99 119 105 | 114 110 100 92 123 108
123 120 109 104 134 118 | 28 24 29 34 | 27 102 132 111 112 112 114 119 114 124 118 | 123 120 | | 600 | 34 25 38
35 29 41 | 41 42 36
45 44 39 | 155 144 155 147 174 155
164 154 164 157 182 164 | 177 177 163 157 197 174
187 189 172 168 207 185 | 31 26 32 42
44 38 46 56
47 41 49 63 | 31 113 141 121 126 121 124 131 125 134 133
44 162 194 177 182 177 178 188 184 198 194 | 197 192 | | 800 | 45 42 52 | 54 57 50 | 207 202 213 203 236 212 | 239 249 226 218 271 241 | 60 53 61 77 | 48 172 204 188 194 186 189 202 196 211 206
60 217 255 242 246 242 240 255 254 273 266 | | | 1000 | 47 46 55
55 60 67
57 66 72 | 58 62 54
67 74 65
72 78 69 | 259 264 267 256 298 269 | 250 264 235 231 282 252
300 323 289 282 342 307
311 339 301 295 353 320 | 63 55 65 84
75 66 76 96 | 64 229 266 254 260 253 252 268 266 287 281
76 272 316 307 311 309 303 321 323 349 337 | 347 335 | | 1200 | 66 78 83
68 82 88 | 81 88 79 | 309 323 323 308 359 324 | 360 394 351 344 411 372 | 78 69 81 101
89 80 92 111 | 79 283 327 321 322 319 314 335 336 364 349 90 327 377 375 371 374 365 388 394 425 404 | 420 406 | | 1400 | 76 92 96
78 97 100 | 94 103 92 | 358 379 377 363 419 379 | 371 409 364 359 424 385
419 463 411 409 480 436 | 96 B3 97 115
110 94 110 126 | 95 343 388 388 381 383 377 406 407 439 416
106 388 440 443 427 436 427 460 463 501 468 | 490 476 | | 1600 | 85 108 109 | 98 106 96
107 117 105 | | 431 478 424 420 492 449
478 531 472 468 547 499 | 117 97 114 128
130 106 126 139 | 110 402 451 460 439 446 440 476 476 520 482
120 450 498 515 487 496 489 533 528 582 536 | | | 1800 | 97 122 125 | 112 121 110
121 131 119 | 463 489 490 473 529 489 | 490 548 485 483 561 508
539 599 535 530 614 563 | 133 108 130 143
142 119 139 152 | 123 463 512 532 501 506 503 547 543 600 550
133 505 558 581 547 553 549 598 598 660 604 | 572 562 | | 2000 | 105 135 137 | 126 135 123
134 145 131 | 474 502 504 488 542 502
512 542 545 527 582 542 | 550 615 548 546 628 577
596 665 594 590 678 625 | 146 123 145 156
160 131 154 165 | 137 519 575 600 560 563 563 613 615 679 619
147 564 617 648 604 608 608 668 664 735 670 | 639 633
692 686 | | 2200 | 117 149 152 | 139 149 136
146 159 145 | 562 593 599 580 632 593 | 609 680 611 605 691 639
657 727 658 653 736 686 | 163 136 159 172
177 145 168 182 | 151 577 633 665 623 617 623 682 680 755 689
161 622 675 713 666 661 667 735 728 810 737 | 703 702
753 753 | | | | 150 162 148
159 173 156 | 574 607 613 595 641 606
610 644 652 631 680 643 | 671 744 674 668 747 701
714 788 720 712 792 745 | 181 148 173 187
190 158 181 195 | 164 635 691 733 682 673 683 750 744 829 755 | 765 769 | | 2400 | 127 164 168 | 162 176 159
169 185 168 | 624 658 667 646 692 657 | 729 806 736 730 804 761 | 193 161 186 201 | 177 691 751 798 740 727 741 813 808 900 818 | | | 2600 | 139 178 181 | 174 189 172 | 673 713 722 696 739 709 | 773 851 780 769 845 804 788 870 797 788 859 820 | 208 169 195 209
210 173 201 214 | 187 734 791 839 780 757 702 864 853 948 864
190 749 809 864 799 778 800 883 870 971 883 | 873 880
887 899 | | 2800 | 148 189 193 | 181 198 179
185 201 183 | 708 746 756 728 771 742
721 762 774 744 786 757 | 827 909 837 826 898 859
843 929 856 845 914 877 | 219 182 209 222
228 185 215 227 | 199 785 847 904 836 814 837 923 911 1017 925
204 820 866 930 852 827 859 956 929 1042 944 | | | 3000 | | 191 210 191
196 214 195 | 755 797 806 775 818 790
772 815 823 792 835 807 | 882 969 894 880 952 915
900 991 912 900 971 935 | 236 193 223 235
240 196 230 240 | 212 854 902 966 889 861 894 998 966 1085 987
216 873 920 995 909 873 914 1021 986 1113 1010 | | | 3200 | | 202 222 203
207 228 207 | | 938 1028 951 933 1008 972
957 1050 972 955 1031 993 | 248 204 238 248
253 208 244 254 | 224 905 954 1029 943 906 947 1059 1023 1155 1050 | 1037 1065 | | 3400 | 172 222 228 | 213 236 214
217 241 218 | 850 894 906 867 915 886 | 991 1087 1007 986 1067 1028 | 266 215 251 262
270 219 258 268 | 229 927 974 1058 965 919 969 1084 1046 1184 1074 237 964 1005 1091 998 950 1002 1126 1082 1222 1111 242 986 1025 1121 1022 963 1023 1149 1105 1252 1136 | 1088 1126 | | 3600 | 183 233 242 | 222 249 226
227 254 230 | 900 942 958 912 970 936 | 1048 1146 1064 1037 1128 1085
1067 1173 1085 1059 1194 1116 | 277 226 266 275
286 231 274 281 | 249 1016 1055 1153 1054 993 1054 1185 1139 1239 1171
255 1046 1077 1185 1078 1008 1079 1216 1153 1319 1198 | 1138 1184 | | 3800 | 192 246 251 | 233 264 237
238 270 242 | 945 993 1005 957 1021 984 | 1101 1207 1119 1089 1187 1141 | 293 239 281 289 | 262 1075 1107 1215 1109 1036 1108 1250 1196 1355 1232 | 1186 1244 | | 4000 | 203 257 264 | 243 279 249 | 996 1039 1053 1002 1074 1033 | 1123 1233 1140 1111 1215 1164
1158 1262 1175 1139 1247 1196 | 299 242 287 295
311 250 294 303 | 267 1103 1129 1243 1145 1050 1134 1276 1218 1342 1267 276 1136 1157 1273 1173 1078 1163 1313 1251 1417 1298 | 1233 1302 | | | | 248 285 254
254 293 261 | 1017 1060 1072 1023 1098 1054 | 1180 1288 1198 1164 1274 1221
1213 1319 1229 1191 1305 1251 | 318 254 301 309
324 361 309 316 | 281 1161 1178 1302 1198 1093 1186 1341 1275 1447 1325
288 1187 1207 1331 1226 1117 1214 1373 1305 1482 1356 | 1250 1328 | | 4200 | | 258 299 266
265 307 273 | | 1236 1346 1251 1215 1333 1276
1266 1374 1283 1241 1365 1306 | 329 265 315 322
340 273 323 329 | 293 1210 1230 1359 1252
1131 1236 1400 1330 1512 1384 | 1294 1384 | | 4400 | 234 283 289 | 269 312 277 | 1114 1155 1170 1110 1205 1151 | 1289 1400 1307 1265 1393 1331 | 345 277 329 335 | 301 1242 1257 1389 1279 1159 1265 1437 1360 1546 1414
306 1265 1279 1418 1305 1175 1288 1465 1385 1578 1442 | 1344 1443 | | 4600 | | 275 320 284
279 325 288 | 1160 1204 1215 1154 1257 1198 | 1319 1430 1337 1289 1423 1360
1344 1458 1360 1314 1453 1386 | 352 284 337 342
357 287 343 348 | 313 1289 1306 1446 1331 1197 1314 1495 1415 1610 1472
317 1313 1329 1477 1357 1212 1338 1524 1440 1643 1500 | 1370 1472 | | 4800 | 255 306 312 | 285 333 295
290 339 3 00 | 1185 1225 1244 1175 1282 1222
1208 1250 1266 1198 1310 1229 | 1373 1485 1391 1341 1483 1415
1398 1513 1416 1365 1515 1441 | 369 295 350 355
374 299 357 361 | 325 1344 1356 1504 1382 1236 1364 1560 1470 1674 1530
331 1369 1379 1537 1410 1253 1390 1592 1497 1709 1560 | 1416 1530 | | 5000 | | 295 347 306
300 354 312 | | 1426 1542 1445 1391 1546 1470
1453 1573 1470 1420 1578 1499 | 380 306 364 367
393 310 372 374 | 337 1391 1405 1563 1435 1274 1414 1620 1526 1741 1589 | 1461 1587 | | 5200 | 271 324 329 | 306 361 318
312 368 323 | 1278 1320 1340 1268 1388 1319 | 1481 1599 1501 1447 1607 1527
1508 1629 1527 1472 1641 1555 | 399 317 379 380
404 321 387 386 | 350 1449 1454 1624 1487 1317 1466 1686 1582 1806 1647 | 1510 1444 | | 5400 | 281 337 339 | 318 375 330
322 382 335 | 1326 1370 1387 1313 1441 1367 | 1537 1658 1553 1498 1669 1583
1563 1688 1579 1524 1703 1611 | 414 328 394 392
419 330 402 398 | 363 1504 1505 1683 1539 1355 1517 1752 1638 1874 1705 | 1555 1705 | | 5600 | 291 348 351 | 328 389 341
334 396 347 | 1372 1415 1437 1358 1494 1415 | 1590 1715 1610 1549 1731 1639
1618 1746 1637 1576 1765 1668 | 419 330 402 398
425 337 409 404
430 341 418 410 | 374 1553 1557 1741 1589 1398 1568 1814 1694 1941 1763 | 1605 1763 | | 5800 | 301 360 361 | 339 403 353 | 1421 1460 1483 1404 1545 1463 | 1646 1774 1664 1600 1793 1695 | 440 348 424 416 | 380 1580 1583 1779 1618 1420 1596 1847 1722 1982 1794
387 1608 1607 1802 1640 1443 1620 1881 1749 2011 1822 | 1455 1824 | | | | 345 410 358
351 417 365 | | 1676 1806 1691 1628 1829 1726
1703 1834 1720 1654 1858 1754 | 448 352 433 422
453 359 441 428 | 393 1641 1632 1838 1669 1469 1650 1917 1779 2050 1854
400 1661 1657 1862 1691 1491 1672 1945 1807 2081 1880 | 1AR1 1854 | | 6000 | | | 1493 1530 1557 1473 1629 1536 | | 462 364 450 434 | 406 1688 1681 1896 1719 1514 1700 1977 1836 2119 1912 | 1709 1884
1737 1916 | APPENDIX TABLE 30 Two-Factorial Analysis of Variance of Follow-Up Stiffness Test Data for Pallets of Two Designs, Assembled with Four Different Nails | | Sum of
Squares | Degrees of
Freedom | Mean
Square | Computed f | Critical
f | | |-------------|-------------------|-----------------------|----------------|------------|---------------|----| | Design | 79.25 E6 | 1 | 79.25 E6 | 87.09 | 4.15 | Ş. | | | 13.61 E6 | 3 | 4.54 E6 | | 2.90 | S | | Interaction | n 3.68 E6 | 3 | 1.23 E6 | 1.35 | 2.90 | NS | | Error | 29.15 E6 | 32 | 0.91 E6 | - | | | | Total | 125.69 E6 | 39 | | | | | APPENDIX TABLE 31 Detailed Load-Carrying Capacity Data, in Lb. | Pallet | Pallet | Pallet | Ultimate | Pallet | Pallet | Ultimate | |--------------|--------|--------|-----------|--------|--------|-----------| | Design | No. | Weight | Test Load | No. | Weight | Test Load | | Conventional | Aa1 | 135.06 | 8800 | Ac1 | 136.75 | 11000 | | | Aa2 | 137.95 | 8800* | Ac2 | 137.67 | 10400 | | | Aa3 | 135.47 | 7200* | Ac3 | 134.56 | 9400 | | | Aa4 | 136.44 | 9200 | Ac4 | 137.53 | 8600 | | | Aa5 | 136.62 | 8400 | Ac5 | 135.81 | 10500 | | | Avg. | 136.31 | 8480 | Avg. | 136.46 | 9980 | | | Ab 1 | 139.89 | 10200 | Ad1 | 142.88 | 9600 | | | Ab 2 | 137.42 | 10800 | Ad2 | 140.28 | 6000* | | | Ab 3 | 139.69 | 9800 | Ad3 | 139.44 | 10400 | | | Ab 4 | 139.42 | 10400 | Ad4 | 137.55 | 9800 | | | Ab 5 | 136.53 | 9400 | Ad5 | 141.25 | 8800 | | | Avg. | 138.59 | 10120 | Avg. | 140.28 | 8920 | | Improved | Ba1 | 158.81 | 11800 | Bc1 | 153.88 | 11800* | | | Ba2 | 158.75 | 12000 | Bc2 | 158.83 | 6200* | | | Ba3 | 158.58 | 11600 | Bc3 | 156.14 | 11600 | | | Ba4 | 156.19 | 9800 | Bc4 | 152.62 | 12600 | | | Ba5 | 158.62 | 11600 | Bc5 | 151.91 | 11200 | | | Avg. | 158.19 | 11360 | Avg. | 154.68 | 10680 | | | Bb 1 | 154.66 | 13800 | 8d1 | 150.47 | 11600 | | | Bb2 | 161.72 | 12400 | 8d2 | 151.34 | 11400 | | | Bb3 | 157.00 | 10800 | 8d3 | 154.58 | 11800 | | | Bb4 | 155.72 | 9400 | 8d4 | 158.94 | 11200 | | | Bb5 | 156.06 | 11800 | 8d5 | 153.84 | 12000 | | | Avg. | 157.03 | 11640 | Avg. | 153.83 | 11600 | ^{*}Ultimate test load limited by failure of center stringer. APPENDIX TABLE 32 Two-Factorial Analysis of Variance for Ultimate Static Load Test Data for Pallets of Two Designs, Assembled with Four Different Nails | Source of
Variation | | Degrees of
Freedom | Mean
Square | Computed
f | Critical
f | | |------------------------|-----------|-----------------------|----------------|---------------|---------------|----------| | Design | 37.83 E6 | 1 | 37.83 E6 | 20.23 | 4.15 | <u> </u> | | | 4.74 E6 | 3 | 1.58 E6 | 0.84 | 2.90 | NS | | Interaction | 7.87 E6 | 3 | 2.62 E6 | 1.40 | 2.90 | NS | | | 59.90 E6 | 32 | 1.87 E6 | | | | | Total | 110.34 E6 | 39 | | | | | # The vita has been removed from the scanned document # EVALUATION OF THE IMPROVED STEVEDORE PALLET by # Nilson Franco (ABSTRACT) An evaluation was made of the performance of 48" x 63", reversible, double-face, wing-type, two-way entry, nailed red-oak, stevedore pallets of two designs assembled with four different nails. Special consideration was given to Brazilian situations in the light of the interest of the author in the industrial potential of Brazil. The pallets of improved design had their top and bottom leading-edge deckboards backed up by follow-up deckboards. Furthermore, four nails, instead of three, were used for fastening the leading-edge deckboards and three nails, instead of two, were used for fastening the inner deckboards to each stringer. The sequence of tests on each pallet started with the initial stiffness test, followed by the rigidity test, the impact-incline deckboard-stringer separation test, and the follow-up static stiffness and load-carrying capacity tests. The pallets of improved design were better than those of conventional design during all tests performed. The influence of the nails on pallet performance was significantly different only during the performance of the rigidity and impact-incline tests. During the latter test, the pallets of improved design assembled with 3" helically threaded hardened-steel nails were, on the average, 66 times better than the conventional pallets assembled with the Brazilian $2\frac{1}{2}$ " helically fluted nails. Recommendations were advanced, suggesting that the study be continued and that special consideration be given to the wood species available in Brazil for pallet assembly, to the use of improved nails, and to the environmental conditions under which stevedore pallets are exposed.